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What Is a “ Systems Approach” in the Context of
Biological Organisms?

s Looking at cells as integrated systems and not as mere collections of
parts

s Seeks to understand how changes in any given component will affect
the behavior of the entire system

= Requires integration of information from molecular biology,
biochemistry, physics and genetics to understand relationship between
different sets of scientific data.

s Goalis a “Higher order” understanding of life processes.
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Why should DOE care about Systems Biology?

» It offers a chance to actually solve problems.

= Conversion of biology from a descriptive to a
guantitative science.

= This will enable bioengineering and rational design
of biological systems.

s DOE is one of the only organizations that is
capable of applying a systems approach to biology
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What are the Computational Requirements
of Systems Biology?

In order to integrate the data and move biology to being a
system science, we need to:

- develop new theories and mathematics,

- develop new algorithms,

- Implement on the largest available computer systems,

- make full use of large, distributed databases, and

- make the software and computer system usable by
the biologist.
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Biological Organisms are Dynamic and

Recursive
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Qbystems Biology Requires Scientific
Integration

Theory

7 \

Analysis Experiment

-

To solve specific problems using a
“systems approach”, you must couple
theory with experlments and analysis
In a recursive manner. This requires
close coordination between program
elements.
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The GTL program describes programmatic integration, but does not indicate how scientific integration will be achieved.

All “systems biology” programs acknowledge the need to physically integrate the multidisciplinary components.

DOE does not currently have an integrated computation-biology-instrumentation facility.


Understanding Complex Biological Systems
Using a Top-Down:Bottom-Up Hybrid Approach

= Bottom-Up defines the molecular components of the system
* This sets the physical constraints of system behavior

* This provides basis for generating mechanistic models
= Top-Down computational approach is used to attribute
behavioral characteristics to system

* Encapsulate complexity in terms of modular structure

e Attribute behavioral outcome to molecular composition
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Cell Migration Can Be Broken Down Into a Series
of Steps...
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Extend Model From High-level to Low Level
Example: Wound Healing Response
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Modular Perspective in Cell Biology

= Consider cells as composed of groups of interacting
modules

= Modules are functionally independent

= Modules interact at defined (and limited) regulatory
nodes

s Function of cells defined in terms of collection of
modules
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Systems Biology = Quantitative Biology

eSystem is defined as group of interacting parts
Interactions are dependent on quantities
«Cellular processes are best described as rates

Computer simulations require guantification
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What, Where, Quantity, Quality?

To successfully model a complex
biological system, one must minimally
know the following information:

What parts are being made? (identity)
Where are the proteins located in cell? (location)
What are their levels? (quantity)

How do they interact with their partners? (activity)
* As a function of covalent modification
® Contribution of steric restrictions
* Forward and reverse rate constants
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What Is Necessary to Understand a Network?

o
l Nodes Spatial Organization
' ® (Components) (Transport)
| /L\ Connectivity Dynamic Range
o ® O (Interactions) (Kinetics)
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Growth Factor Pathways

Extracellular

space
Plasma Nuclear
membrane membrane
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How Can We Understand Signaling Networks?

Hanahan & Weinberg, 2000
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Structure of Cells
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Intracellular Trafficking Pathways
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The EGFR System

Late Endosomes
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How Do We go From Cartoon Model to Realistic
Model?

= Model must be quantifiable
= Model must make very specific predictions

= Model must account for changes in components
as well as input parameters

= Must be testable with experimental data

Models and experiments need
to be developed together
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The EGFR System

Late Endosomes
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Spatial Colocalization by Image Analysis

For two
molecules to
Interact, they
must be
located In the
same space at
the same time.
This can be
determined by
Image
analysis
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Colocalization of EGFR and HER?2

QuickTime™ and a
DV - NTSC decompressor
are needed to see this picture.
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QuickTime™ and a
Cinepak decompressor
are needed to see this picture.
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Stochastic/Kinetic Simulations = Dynamic Monte Carlo method
(Probability weighted)
A probabilistic approach as opposed to deterministic
Extension of the Monte Carlo method to the time domain 0
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Signal Pathways: Computer Simulation of Protein-
Protein Complexes

* Ras acts as the GTP-activated molecular
switch in the cell signaling pathway for gene
expression, controlling cell proliferation and
differentiation. Mutations found at GIn-61 in
30% of human tumors.

* Issues for modeling the Ras:Raf signaling complex :
50,000 atoms, long-time simulations, solvent, lack of knowledge
of the entire structure

TP Straatsma, H Resat, JH Miller, T Soares, DA Dixon, PNAS, 2001
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Model for the Role of Ca%* in Stress-Response
Pathways: NWGrld/NWPhyS H Trease, JH Miller
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Signaling Through Growth Factor Receptors
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What we do is to take what is known about the molecular biology of signaling networks and conceptualize them. By looking at the different parts of the pathways as concepts we can understand them in terms of controls and regulators.


Central Role of Computation and Simulation
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Computer simulations provide a conceptual
framework for organizing system behavior

Bio / lecular U.S. Department of Energy
Batielle g“l’.‘ orks Pacific Northwest National Laboratory




Cell State Dictates Cell Response

=  DNA is information storage of cell
s Proteins are the “program” running the cell

= The running program dictates cellular response

Thus, one cannot adequately model or
predict cellular responses UNLESS the

proteome of a given cell is first specified!
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Proteomics

= What parts are being made? (identity)
* Develop technologies for global proteomics
* Develop technologies for selective proteomics
= What is their state of modification? (activity)
* Phosphorylation state
* Other covalent modifications
=  What are their levels? (quantity)
* High-throughput quantification
* Rapid guantification
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Capillary LC-FTICR 2-D display of peptides from a yeast soluble protein digest
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Probability Network for Proteomics
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Software provides connection between visual displays and data
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@ FTICR Mass Intensities
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Figure 1. The first plot is a scatter plot of mass classes (ie observations in the ms data that are grouped by mass ranges) between two cell populations.

The fact that a large majority of the points lie on the diagonal means that the levels are correlated. This plot is one that is generally associated with

DNA microarrays, not protein expression measurement. The most important point is that the points that fall off the diagonal are up or down regulated and the 

data can be made quantitative.



Figure 2. Graph consisting of proteins (nodes) that are related by the mutual information statistic. The relationships are symbolized by double-headed arrows (edges), which  represents a range of values of the mutual information statistic above a arbitrary cutoff value. The data used in the analysis were from FTICR MS analysis of Deinococcus radiodurans cells grown under 15 different experimental conditions, in which the FTICR MS results indicated the presence or absence of each protein. The information theory analysis used this two-state model (present/absent).



Although, the data set is small and the data itself only consists of information on whether the protein was observed or not (rather than expression levels), the results are intriguing. Five of the six proteins in the group on the right of the figure are all associated with biosynthesis: (a) the ribosomal protein L29; (b) methionyl-tRNA synthetase, (c) a signal recognition particle protein that binds RNA; (d) Guanosine monophosphate synthase, an enzyme involved in GTP biosynthesis; and (e) adenylosuccinate lyase, an enzyme involved in de novo purine synthesis. The six protein is of unknown function. The value of these networks is two-fold: first they provide a computational framework for discover-driven science; second, they capture knowledge from diverse experimental sources and allow the biologist to make more insightful hypotheses.

 




Database Reguirements for Proteomics
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Automated data mining of genome superfamily
sequences — Data integration and method validation
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(automation tool under development) superfamily sequences
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New Model for Biological Analysis
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Computational Sciences Ties Systems Biology Together
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