02/10/2017
Poplar Gene Enhances Lateral Root Formation and Biomass Growth Under Drought Stress
Developing drought‐resistance varieties is a major goal for bioenergy crops, such as poplar, which will be grown on marginal lands with little or no water input.
The Science
A newly characterized poplar gene expressed primarily in roots influences the plant’s root development and drought resistance.
The Impact
This discovery will facilitate the development of bioenergy poplar trees with enhanced drought resistance, a key trait for the sustainable growth of bioenergy feedstocks on marginal lands.
Summary
Developing crops with improved drought resistance and water use efficiency is important for sustainable agriculture. These traits are particularly critical for plants to be grown as dedicated biomass feedstocks on marginal lands with little or no inputs such as irrigation. Since water is taken up by the roots, root architecture is directly related to the plant’s ability to tolerate drought conditions, and researchers have found several genomic regions (quantitative trait loci, or QTL) for root traits associated with drought resistance. However, the multigenic nature of many of these traits make using these QTL in a breeding program difficult, and few specific genes have been identified. Recently, scientists at Michigan Technological University and Oak Ridge National Laboratory used a powerful forward genetics approach known as activation tagging in the bioenergy crop poplar to identify a specific transcription factor gene (PtabZIP1-like), predominately expressed in poplar roots, that moderates the development of lateral roots and drought resistance through multiple metabolic pathways. The discovery of this gene provides a path to further knowledge of the functional mechanism of drought resistance, which could, in turn, offer potential new approaches to breeding more sustainable bioenergy feedstocks.
Principal Investigator
Victor Busov
Michigan Technological University
[email protected]
BER Program Manager
Kari Perez
U.S. Department of Energy, Biological and Environmental Research (SC-33)
Biological Systems Science Division
[email protected]
Funding
This work was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research, Genomic Science program, Plant Feedstock Genomics (DE-SC0008462); and U.S. Department of Agriculture (USDA), National Institute of Food Agriculture, Institute of Bioenergy, Climate and Environment (grant number 2009-65504-05767). This work was also sponsored in part by DOE’s Genomic Science program (Science Focus Area ‘Plant-Microbe Interfaces’ at Oak Ridge National Laboratory) under contract DE-AC05-00OR22725 and USDA National Institute of Food Agriculture (MICW-2011-04378).
References
Dash, M., Y. S. Yordanov, T. Georgieva, T. J. Tschaplinski, E. Yordanova, and V. Busov. 2017. “Poplar PtabZIP1-Like Enhances Lateral Root Formation and Biomass Growth Under Drought Stress,” The Plant Journal 89(4), 692–705. DOI:10.1111/tpj.134.