
Uniform sampling of metabolic networks
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Project Goals: Development of a framework for mass conserved elementary kinetic modelling of
metabolic networks [1, 2, 3, 4, 5]. This collaborative project was motivated by a need for data to
constrain and validate metabolic models. Sampling algorithms have demonstrated applications in
measurement and estimation of kinetic parameters, steady state fluxes and metabolite concentrations
for biochemical systems [6, 7, 8].

Constraint-based metabolic modelling provides a framework to explore feasible steady state fluxes in metabolic
networks. Physicochemical constraints imposed, e.g., by network topology, mass conservation and substrate avail-
ability are formulated as linear equalities and inequalities that define a high-dimensional convex set. Uniform
sampling of this set provides an unbiased characterisation of the metabolic capabilities of a cell or organism [9].
However, uniform sampling of steady state metabolic flux sets has proven algorithmically challenging due to their
high dimensionality and inherent anisotropy. Here, we evaluate the performance of a recently published sampling
algorithm [10] on metabolic networks of increasing size. The algorithm is based upon the provably efficient hit-and-
run random walk [11] and crucially uses a rounding preprocessing step to place the set of feasible metabolic fluxes
in near-isotropic position. This algorithm converges to a uniform sampling distribution up to 25 times faster than
a popular artificial centering hit-and-run algorithm [12]. We demonstrate the effects of improved convergence on
predictions of the metabolic capabilities of E. coli.
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