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Project goals: Transition metals are of crucial importance for primary productivity; their 

scarcity limits crop growth and carbon sequestration on a global scale. The most important 

elements are copper (Cu), iron (Fe) and manganese (Mn), which all serve as cofactors to 

enable redox biochemistry, especially for oxygenic photosynthesis, the process that 

transformed earth’s primitive anoxic environment and is largely responsible for primary 

production today. The single-celled, eukaryotic green alga Chlamydomonas reinhardtii is an 

excellent model system to study trace metal biology in phototrophic organisms, with all the 

advantages of a microbial system, well-characterized photosynthetic and trace metal 

metabolic machinery. The goal of this project is to identify, differentiate and characterize 

the different trace metal storage compartments in the Chlamydomonas cell, and uncover 

the dynamics of trace metal storage and mobilization in situations of excess and limitation 

in single cells. 

 

Abstract: Chlamydomonas reinhardtii is a unicellular green alga that has been widely used as a 

plant reference system for six decades, it has a quick generation time (~ 6h), can be synchronized 

and grown to high densities and its three genomes are sequenced and well-annotated [1]. We 

have utilized Chlamydomonas as a reference organism for decades to understand the principles 

underlying trace metal utilization and economy in a photosynthetic cell, and have identified a 

repertoire of assimilatory and distributive transporters, discovered mechanisms for reducing the 

metal quota and recycling metal cofactors from non-essential to essential proteins in situations of 

sustained elemental deficiency [2].  

Chlamydomonas requires a broad spectrum of metal cofactors to sustain its photosynthetic, 

respiratory and metabolic capabilities, and iron (Fe), copper (Cu) and manganese (Mn) are the 

major transition metals involved in these processes. The metal catalysts in the photosynthetic 

electron transfer chain span a potential of about 2V, with a strong Mn-containing oxidant in 

photosystem II, enabling the oxidation of water and a strong, Fe-containing reductant in PS I 

enabling the reduction of NADP+ for the synthesis of reduced carbon-containing compounds 

from CO2. While indispensable and often growth-limiting when absent, redox active metals are 
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toxic for cells, and are therefore tightly bound or sequestered upon uptake. They are either 

handled by a set of intracellular ligands (protein chaperones, metallothioneins, phytochelatins or 

glutathione, for example) or sequestered into specific compartments, like vacuoles. 

We identified and characterized the acidocalcisome as a major storage site for Cu (in Zn 

deficiency and Cd toxicity), Fe (in Zn deficiency and in Fe excess conditions) and Mn (in Mn 

excess conditions). The acidocalcisome is an acidic vacuole in the cytosol, defined by the 

presence of pyrophosphate and polyphosphate complexed with calcium [3,4]. It can be identified 

as an electron-dense granule by transmission electron microscopy, or more precisely with 

multimodal X-ray fluorescence microscopy (XFM) analysis according to its characteristic high 

calcium and phosphorus content. XFM allows to absolutely quantify cellular trace metal 

contents, since no sectioning is required for one Chlamydomonas cells and metabolic states can 

be conserved rapidly using either vitrification or chemical fixation. We used XFM on the 

bionanoprobe (beamline 9-ID-C) at the Advanced Photon Source at the Argonne National 

Laboratory to determine the spatial distribution of trace metals within algae cells, and quantified 

the contents of the acidocalcisomes in situations of various trace metal hyper-accumulation (Fe, 

Cu, Mn). We utilized a set of different mutants, including the vacuolar transporter chaperone 

(vtc1) mutant strains, that are defective in polyphosphate synthesis and where acidocalcisomes 

are highly diminished [5], and the copper transporter (ctr2) mutant strain to distinguish two 

distinct vacuolar sub-types, depending or their elemental composition. Additionally, 

quantification of the trace metal content of individual cells via XFM and comparisons to data for 

cell cultures acquired with inductively-coupled plasma mass spectrometry (ICP-MS/MS) 

allowed us to distinguish the nutritional state for Cu and Fe in single cells. 
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