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Project Goals: 

The project’s overall goal is to develop optimal experimental campaigns to achieve a particular 
objective, namely metabolite yield alteration. The optimal experiments will be designed by 
quantifying the cost of uncertainty in the current predictive model—a transcriptional regulatory 
network model that regulates metabolism—and selecting the experiments that are expected to 
maximally reduce the model uncertainty that affects the attainment of the aforementioned 
objective. This approach will serve as a proof of principle, demonstrating the significant potential 
of computationally guided biology in areas directly relevant to BER’s missions. 
  
Any future bio-economy likely will include a spectrum of engineered organisms. As sources of 
economically valuable products, prokaryotes offer many beneficial attributes (e.g., rapid growth 
and diverse metabolic capabilities), including the production of multiple value-added products that 
can offset the cost of bioenergy products. However, the biological complexity and diversity of 
these organisms impede development of genome-wide engineering strategies. Lack of knowledge 
about proteins that participate in or regulate given processes presents a barrier to predictive 
engineering. Consequently, despite recent molecular advances with Clustered Regularly 
Interspaced Short Palindromic Repeats associated (CRISPR Cas)-based tools, knowing what and 
how to engineer organisms to achieve a desired goal remains a bottleneck, resulting in many 
genome engineering projects that do not meet expected outcomes. Even with simple organisms 
such as prokaryotes, knowledge is highly uncertain and incomplete. Understanding how these 
systems respond to an intervention is even less exhaustive. Thus, such paucity of knowledge 
regarding complex biological systems requires robust optimization strategies. 
 
While computing infrastructures can assist bench scientists in designing experiments that can 
effectively fill knowledge gaps in biological networks, designing and implementing these 
infrastructures remain significant tasks. Data derived from biological experiments are 
multifaceted, multidimensional, and originate from different sources (i.e., organisms), and 
interpretation often requires understanding and analyzing multiple fields of research. 
Consequently, engineered organisms may exhibit unanticipated outcomes.  
  
Addressing these challenges requires a probabilistic framework for integrative modeling of 
heterogeneous omics data (especially transcriptomics and metabolomics data), quantification of 
the uncertainty affecting the objective (i.e., strain improvement to optimize metabolite yield), and 



designing the optimal experiment that can effectively reduce this objective-based uncertainty. The 
MOCU (mean objective cost of uncertainty) concept and the MOCU-based OED framework 
proposed in this project are well suited for overcoming these challenges. 
  
This project exploits the team’s collective expertise in systems biology, high-performance 
computing, mathematical modeling, and control of uncertain complex systems to: (1) take 
advantage of existing models and data, even when there is uncertainty, to robustly predict optimal 
experiments; and (2) employ an OED framework to optimize the outcome in an efficient manner 
(i.e., fewer experiments and less guesswork), where optimization is achieved by optimally (most 
favorably) improving knowledge about the model (or the microbial system represented by the 
model) relevant to the objective.  
 
We have developed a new flexible analysis pipeline, TRIMER: Transcription Regulation 
Integrated with MEtabolic Regulation, enabling integrative systems  modeling  of  transcription 
factor (TF) regulated  metabolism.   In this workflow, we adopt a  Bayesian  network (BN) inferred 
from large-scale gene-expression compendia, rather TF-gene conditional probabilities, which 
enables the incorporation of prior relational knowledge when modeling TF regulations that affect 
metabolism. Consequently, our modeling framework can take advantage of pathway knowledge 
and quantify the impact of extending our current knowledge regarding transcription regulation via 
future experiments on the objective (i.e., optimize metabolite yield). Based on the constructed BN, 
we can infer the probabilities of gene states of interest, and consequently predict genome-scale 
metabolic fluxes of mutants by TF knockouts. Additionally, we have developed a simulation 
framework to mimic the TF-regulated metabolic network, which is capable of generating both 
gene expression states and metabolic fluxes, thereby providing a fair evaluation platform for 
benchmarking models and predictions. Here, we present progress on these computational pipelines 
as well as their applicability to both simulated and actual experimental data. 
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