## PEPC kinetics and the efficiency of C<sub>4</sub> photosynthesis in Sorghum bicolor

Asaph B. Cousins<sup>1</sup>\* (acousins@wsu.edu), Ryan L. Wessendorf<sup>1</sup>, Robert J. DiMario<sup>1</sup>, Kuenzang Om<sup>1</sup>, and **Ivan Baxter**<sup>2</sup>

<sup>1</sup>Washington State University, Pullman, WA 99163, <sup>2</sup>Donald Danforth Plant Science Center, St. Louis, MO 63132

url: http://foxmillet.org

**Overall Project Goals:** This project aims to leverage *Setaria viridis* as a model system to develop novel technologies and methodologies to redesign the bioenergy feedstock *Sorghum bicolor* to enhance water use and photosynthetic efficiencies. Here we specifically focus on Objective #1: *Engineering photosynthesis to improve performance under water stress*.

**Abstract:** Due to the predicted increase in food demand, studying the biochemical components of C<sub>4</sub> photosynthesis may provide insight into enhancing photosynthesis in crop plants to increase yield. Currently, photosynthesis can be reduced in C<sub>4</sub> crops by drought conditions which reduce intercellular CO<sub>2</sub> concentrations (C<sub>i</sub>) in the plant. The initial carboxylation reaction in C<sub>4</sub> plants is catalyzed by phosphoenolpyruvate carboxylase (PEPC) and leads to elevated CO<sub>2</sub> around Rubisco. The C4 isozyme of PEPC originated from a non-photosynthetic PEPC and it has been suggested that specific amino acid substitutions in PEPC confer differences in the affinity of the enzyme for PEP ( $K_{PEP}$ ). These changes in  $K_{PEP}$  may be an unavoidable side effect of selecting for a higher affinity for  $HCO_3^-$  ( $K_{HCO_3}$ ) to maintain rates of PEPC when stomatal conductance  $(g_s)$  is low. However, experimental evidence for amino acid changes influencing in planta kinetic properties of PEPC and rates of C<sub>4</sub> photosynthesis is lacking. Therefore, the objective of this aim is to determine how specific amino acid differences between the C<sub>3</sub> and C<sub>4</sub> isozymes of PEPC influence the efficiency of C<sub>4</sub> photosynthesis when the availability of atmospheric CO<sub>2</sub> is low. To accomplish this objective, we are measuring the kinetic properties of 28 PEPC isozymes from both C<sub>3</sub> and C<sub>4</sub> plants from members of the Poaceae family. These enzymes were overexpressed and purified from the PEPC-less PCR1 Escherichia coli strain. The kinetic measurements have been compared to determine if there is a tradeoff between  $K_{PEP}$  and  $K_{\rm HCO3}$ . These PEPC kinetic parameters were measured in a temperature-controlled cuvette linked to a mass spectrometer. The ultimate goal of this research is to introduce an enhanced PEPC enzyme into sorghum to increase photosynthesis under drought conditions. The outcome of this research will enhance C<sub>4</sub> photosynthetic efficiency and will lead to an increase in whole plant water use efficiency.

**Funding statement:** This work was supported by the Office of Biological and Environmental Research in the DOE Office of Science (DE-SC0008769).