ART: a machine learning Automated Recommendation Tool for synthetic biology

Hector Garcia Martin^{1,2,3,12,*}(hgmartin@lbl.gov), Tijana Radivojevic^{1,2,3}, Zak Costello^{1,2,3}, Kenneth Workman^{1,4}, Soren Petersen⁵, Jie Zhang⁵, Andres Ramirez⁷, Andres Perez⁷, Eduardo Abeliuk⁶, Benjamin Sanchez⁵, Yu Chen^{10,11}, Mike Fero⁶, Jens Nielsen^{5,11,13}, Michael Krogh Jensen⁵, Jay Keasling^{1,4,5,8,9} (**Project PI**)

¹Joint BioEnergy Institute, Emeryville, CA; ²Lawrence Berkeley National Laboratory, Berkeley, CA; ³DOE Agile BioFoundry; ⁴Department of Bioengineering, University of California, Berkeley, CA, USA; ⁵Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark; ⁶TeselaGen Biotechnology, San Francisco, CA 94107, USA; ⁷TeselaGen SpA, Santiago, Chile; ⁸Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA; ⁹Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen, China; ¹⁰Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; ¹¹Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden; ¹²BCAM, Basque Center for Applied Mathematics, Bilbao, Spain; ¹³BioInnovation Institute, Ole Maaløes Vej 3, DK-2200 Copenhagen, Denmark

Project Goals: Establish the scientific knowledge and new technologies to transform the maximum amount of carbon available in bioenergy crops into biofuels and bioproducts.

Traditional synthetic biology approaches involve ad-hoc non systematic engineering practices, which lead to long development times. Here, we present the Automated Recommendation Tool (ART), a tool that leverages machine learning and probabilistic modeling techniques to guide synthetic biology in a systematic fashion. Using sampling-based optimization, ART [1] provides a set of recommended strains to be built in the next engineering cycle, alongside probabilistic predictions of their production levels. We demonstrate the capabilities of ART on a tryptophan producing strain and are able to improve production by 17% compared to best designs used for algorithm training and 106% compared to the initial strain [2].

References

- 1. Radivojević T, Costello Z, Martin HG (2019) ART: A machine learning Automated Recommendation Tool for synthetic biology. arXiv.
- 2. Zhang J, Petersen SD, Radivojevic T, Ramirez A, Pérez A, et al. (2019) Predictive engineering and optimization of tryptophan metabolism in yeast through a combination of mechanistic and machine learning models. BioRxiv. doi:10.1101/858464.

This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy.