Engineering a Cytochrome P450 System for Oxidative Demethylation of Lignin-Related Aromatics

Alissa Bleem^{*,1,2} (<u>alissa.bleem@nrel.gov</u>) Emerald S. Ellis,³ Daniel J. Hinchen,⁴ Lintao Bu,¹ Sam J.B. Mallinson,^{1,4} Mark D. Allen,⁴ Bennett R. Streit,³ Melodie M. Machovina,^{3,5} Quinlan V. Doolin,³ William E. Michener,¹ Christopher W. Johnson,¹ Brandon C. Knott,¹ John E. McGeehan,⁴ Jennifer L. DuBois,³ Gregg Beckham^{1,2}, and **Gerald A. Tuskan**²

¹Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO; ²Center for Bioenergy Innovation, Oak Ridge National Laboratory, TN; ³Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT; ⁴Centre for Enzyme Innovation, University of Portsmouth, Portsmouth, United Kingdom; and ⁵Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL

cbi.ornl.gov

The Center for Bioenergy Innovation (CBI) is a multidisciplinary center with the vision of *accelerating domestication of bioenergy-relevant, non-model plants and microbes to enable high-impact innovations across the bioenergy supply chain.* The CBI Lignin Valorization Team aims to integrate lignin refining, lignin depolymerization, microbial conversion of lignin-related compounds, and production of new materials from lignin polymers to enable a holistic biorefinery paradigm. The microbial conversion aspect of this effort requires new and improved biological platforms, including bacteria designed to simultaneously catabolize a variety of lignin-related compounds and convert them to valuable products – a process known as "biological funneling".

Abstract: Biological funneling of lignin-related aromatic compounds is a promising approach for valorizing its catalytic depolymerization products. Industrial processes for aromatic bioconversion will require efficient enzymes for key reactions, including demethylation of O-methoxy-aryl groups, an essential and often rate-limiting step. The GcoAB cytochrome P450 system comprises a coupled monoxygenase (GcoA) and reductase (GcoB) that catalyzes oxidative demethylation of the O-methoxy-aryl group in guaiacol, which serves as the base unit for G lignin. We employed structure-guided protein engineering and detailed biochemical assays to identify mutants of the GcoA monooxygenase that catalyze O-demethylation of syringol (the base unit of S lignin) as well as the aromatic aldehydes o- and p-vanillin. One variant, GcoA-T296S, was utilized for *in vivo* demethylation of p-vanillin in *Pseudomonas putida*, an industrially relevant bacterial host. We are also combining structure-guided design with high throughput enzyme evolution screens to identify variants of GcoA that can accept vanillate, a carboxylic acid, as a substrate. This will lay the foundation for a larger effort to compare cytochromes P450 with other enzymatic paradigms for aromatic O-demethylation and thereby establish the most efficient strategy for biological funneling.

The Center for Bioenergy Innovation is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science.