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BSSD 2021 Performance Metric Q3 

Goal: Develop and apply computational approaches to understand microbiome function in 

environmental samples 

Q3 Target: Describe progress on computational approaches used to analyze microbial 

activities in environmental microbiomes 

Introduction 

The LLNL “Microbes Persist” Soil Microbiome Scientific Focus Area (SFA) seeks to determine 

how microbial soil ecophysiology, population dynamics, and microbe-mineral-organic matter 

interactions regulate the persistence of microbial residues and formation of soil carbon (C). Our 

SFA research program is now four years old; it evolved from previously-funded BSSD projects in 

the Firestone (UCB), Banfield (UCB), Sullivan (OSU) and Hungate (NAU) labs. We use stable 

isotope probing (SIP) in combination with ‘omics analyses to measure how dynamic water regimes 

shape activity of individual microbial populations in situ and how their ecophysiological traits 

affect the fate of microbial and plant C. Using measures of population dynamics and microbiome-

mineral interactions, we are working to synthesize both genome-scale and ecosystem-scale models 

of soil organic matter (SOM) turnover, to predict how soil microbiomes shape the fate of soil C. 

Here we focus on computational approaches (and applications) that advance our understanding of 

dynamics in complex soil microbiomes. 

Optimizing Quantitative Stable Isotope Probing  

Stable isotope probing (SIP) is one of the few approaches that can identify the ecophysiology of 

active microorganisms in their native environments, making it one of the most powerful 

techniques in microbial ecology. Broadly speaking, SIP refers to any technique where 

microorganisms that have actively consumed substrates enriched in rare stable isotopes (e.g. C, 

N, O) are identified based on the resulting isotopic enrichment of their nucleic acids, proteins, 

and metabolites. Density gradient SIP is the culture-independent gold standard for directly 

linking sequence to function in complex microbial communities1. When a microbe consumes a 

substrate enriched with a heavy isotope, the cellular components of that cell also become labeled 

in the heavy isotope. Density gradient SIP takes advantage of the increased density of microbial 

nucleic acids (due to assimilation of heavy isotopes), using a density gradient to separate the 

heavy (labeled) nucleic acids from lighter (unlabeled) ones. Isolated heavy nucleic acids can then 

be characterized to identify the organisms that actively assimilated substrates of interest.  

Our SFA team has pioneered new SIP computational approaches that quantify element fluxes 

with high taxonomic resolution. In particular, quantitative stable isotope probing (qSIP) 

developed at NAU with LLNL help, is the isopycnic separation of nucleic acids in cesium 

chloride combined with a mathematical model to quantify isotope enrichment2-5. With qSIP we 

measure growth rates of individual taxa or viruses in complex soil communities using O-labeled 

water as a universal substrate that is used by all actively growing organisms. As described below, 

our group continues to make efforts to improve quantitative accuracy of qSIP calculations. 

qSIP precision and statistical power 

One of the standard perceptions of many SIP practitioners is that increased resolution (i.e., more 

density fractions) leads to improved detection of active organisms represented by amplicon 

variants. However, as the field transitions from 16S-rRNA amplicon studies to sequencing 

metagenomes from density fractions, it can be both financially and computationally prohibitive to 
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run a SIP study with both robust 

replication, and many density fractions. 

We simulated results from multiple 

experimental datasets to represent the 

effects of different fraction resolutions, 

and found diminishing returns when more 

than nine fractions are used. We also 

showed that reduction of the number of 

fractions has little impact on sensitivity 

and specificity as long as a detection limit 

is kept at a minimum of 0.005 g*ml-1 

(equivalent to 9 atom % enrichment of 
13C). Another SIP paradigm is that most of 

the variability is generated between 

batches (tubes spun at different times in 

the ultracentrifuge). However, we showed 

that the variability between batches is 

comparable to variability within batches. 

This knowledge alleviates the need to 

always process control and treatment samples together. Finally, in our paper summarizing these 

analyses (published in mSystems5) we discuss trade-offs between the number of fractions and 

replication, and quantify the number of replicates necessary to achieve a given statistical power 

and detection limit (Fig 1).  

Normalizing amplicon SIP data 

In our calculations of isotope incorporation using SIP-fractionated amplicon counts, we have found 

evidence of spin and sample artifacts, where the densities of an amplicon have slight variations 

and need to be corrected. For example, in a 13C-tracer study, we expect the density fraction of a 

certain amplicon to be constant between the control (12C) samples, and to be the same or denser in 

Figure 1. Statistical power of enrichment detection as a function of 
the number of sample replicates used in a qSIP experiment. To 
determine the necessary replication for a qSIP experiment, users 
can choose their desired statistical power and desired detection 
threshold (represented by different colors). 
 

Figure 2. Six amplicons (circles) are shown for 6 samples before (A) and after (B) stress correction. The median value for 
each amplicon is calculated across the samples (triangles), and a stress value (circle size) is given as the square of the 
distance from the median. A linear correction is applied to adjust all amplicons within a sample to minimize the stress 
values. Density curves for full datasets are shown in panel C where the peak of the 12C and 13C better overlap after 
correction, revealing a ‘shoulder’ of 13C-enriched amplicons on the right-hand side. 
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the 13C samples, depending on the amount of heavy isotope incorporation. To correct for such 

discrepancies, we calculate the “expected” density of each amplicon as the median weighted 

density among all 12C samples (Fig 2A). Next, to correct each individual 12C tube, we obtain a 

“tube stress” by calculating the square of the density difference between the observed and expected 

density for each amplicon, and apply a linear shift of the densities to minimize the tube stress value 

(Fig 2B), circle sizes are stress values). Correction for the 13C samples is similar, except we use 

the expected densities from the 12C samples, and only calculate and minimize the stress on the 

amplicons towards the lower densities. The reasoning for this is that the lower densities are more 

likely to be non-enriched with the heavy isotope and are expected to have a density similar to that 

seen in the 12C samples. This correction approach gives more accurate density curves where the 

peaks of the samples are more aligned, with a slight increase in the right shoulder of the 13C 

samples representing enriched amplicons (Fig 2C). 

qSIP fraction resolution optimization 

Our SFA team at NAU is 

conducting in silico 

experiments to assess 

qSIP optimization, as a 

follow up to our recently 

published sensitivity 

analysis study5. The 

main purpose of these 

experiments is to assess 

fractionation schemes, 

and how different 

approaches affect 

resolution (operationally 

defined as the standard 

deviation of the estimate 

of atom fraction excess 

tracer content, e.g., AFE 
18O). In one set of 

experiments, we are 

testing whether the 

quantity and value of 

information contained 

in qSIP fractions is 

proportional to the 

amount of DNA they 

contain, and thus that 

combining fractions at the tails of the distribution could reduce the cost of the technique with little 

cost in resolution (Fig 3). In contrast, we may find that combining fractions near the center of the 

peak will cause a substantially larger loss in resolution. We postulate that combining fractions on 

the left tails (lighter density region) of the distribution will have the least cost in resolution, 

whereas fractions on the right (higher density region), even though they contain little DNA, hold 

more valuable information because the right tail is where differences in isotope composition most 

strongly affect density. The left tail, by contrast, is bounded primarily by taxa GC content.  

Figure 3. Conceptual scheme for fractionation permutation experiment, a follow-up analysis 
to Sieradzki et al. 2020. Here, we are testing how combining factions affects resolution in 
qSIP experiments. Our hypothesis is that schemes that combine fractions with low DNA 
content will have smaller effects on qSIP resolution, particularly on the left (low density) side 
of the distribution. The fractions with high DNA concentrations contain more information 
about taxa occupying a particular density range, and so analyzing these as separate fractions 
will optimize resolution. Our permutation experiments are examining these effects across 
multiple ecosystems and conditions, to provide general guidelines for qSIP experiments and 
in silico analyses.  
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Genome Assembly and Annotation 

We use genome-resolved metagenomics to identify ecophysiological traits of populations linked 

to soil C persistence. New informatics tools have accelerated soil genome-based metagenomic 

(and metatranscriptomic) analyses7-9. It is now possible to assemble large datasets from dozens of 

samples and recover many 100’s of draft quality genomes10. Our SFA is developing several tools 

to facilitate better metagenome curation and viral sequence analyses.  

New metagenome assembly methods 

One of the benefits of SIP-metagenomes is the increased sequencing depth we achieve, due to the 

individual sequencing of multiple high-resolution fractions. This increase in sequencing depth 

helps obtain reads for organisms that would normally be below the limit of detection. However, 

the increase in sequencing depth makes co-assemblies computationally difficult using traditional 

metagenomic assembly methods. In collaboration with the Joint Genome Institute, we used one of 

our soil datasets to co-assemble 95 short read samples (>22 billion total reads, >3.4 Tbp) at once 

using MetaHipMer11, producing an assembly of >75 Gbp. As far as we know, this is the largest 

metagenome assembly to date. This single co-assembly has multiple benefits. 1) Simplicity: our 

previous co-assemblies of this same dataset had to be processed in 23 batches which makes data 

management, merging and comparisons between assemblies more difficult. 2) Timing: the CPU 

time required for MetaHipMer to co-assemble this dataset was 50x faster than even one of our 23 

co-assembly batches. This is remarkable given that metagenome assembly requires specialized 

high-memory machines and their limited supply means 23 co-assemblies usually cannot be 

conducted in parallel. 3) Quality: the resulting contigs from the MetaHipMer co-assembly are of 

much higher quality, with 

an L50 twice as high as the 

average from the 23 co-

assemblies, and with 10x 

more data present in large 

contigs (>50Kb). 4) 

Unified set of contigs: 

having all of the data in a 

unified set of contigs has 

many advantages, notably 

the increased read-depth of 

rare organisms and the 

removal of the need for 

dereplication steps in 

metagenome assembled 

genome (MAG) curation. 

Indeed, the count, quality 

and diversity of recovered 

MAGs increases as more 

read sets are used (Fig 4). 

Some MAGs present in low-abundance were only recovered from the co-assembly using all read 

sets, and are likely too low abundance to be assembled and binned with other assembly workflows. 

FixAME: automatic curation and improved metagenomic assembly 

High-throughput recovery of MAGs is increasingly one of the primary ways that natural and 

Figure 4. Relative abundance of different microbial taxa with increasing number of 
read sets used in a MetaHipMer co-assembly. The x-axis represents different grouping 
strategies for co-assembling the 95 metagenome samples, from 1, 2, 4, 8, 16, 32, 48 to 
all 95 samples. Taxonomic diversity increases from approx. 4 phyla in the first subset 
to >10 phyla in the full 8 TB co-assembly. Larger co-assemblies appear to allow us to 
detect more phylogenetic diversity, including possibly low-abundance microbes. 
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experimental microbial communities are characterized. Consequently, the recovery of genomes 

that accurately reflect true biological entities is essential. Contemporary metagenomic projects, 

especially those being developed by our Soil Microbiome SFA, can produce thousands of 

genomes, and the computational assemblies that comprise these mass-produced MAGs contain 

characteristic errors. Assembly errors perturb or even preclude functional predictions and accurate 

phylogenetic analyses, and can confound biochemical studies, limiting the full potential utility of 

MAGs. To resolve these issues, we have informatically assessed the prevalence of assembly errors 

using three commonly used metagenomic assemblers (MEGAHIT, metaSPAdes, and IDBA-UD) 

across five environments: soil (from our SFA), lake surface waters12, surface13 and deepocean 

waters14, and the human gut15 (Fig 5). Assembly errors were found across all tested assemblers 

and environments, and lower coverage generally resulted in more errors. Assembly errors can be 

repaired manually, but curation is time-consuming and requires human-guided curation, and so it 

is rarely performed. To overcome this bottleneck, we are developing FixAME, a software toolkit 

for the automatic curation and improvement of metagenomic assemblies that does not necessitate 

human intervention. FixAME is not limited to a few genomes and can be run on thousands of 

genomes or the entire set of assembled sequences from a metagenome. FixAME is being integrated 

KBase (kbase.us) as a public resource for the easy and efficient improvement of large numbers of 

genomes by the scientific community. Following the full development of FixAME, we will be able 

to scale up to curate and improve assemblies in the thousands of MAGs in public databases.   

New hybrid long-reads viromics 

Assembling virus genomes/fragments to characterize mixed virus communities using short read is 

a robust method that has enabled diverse ecological insights into the ecosystem impacts of viruses. 

However, highly variable regions within virus genomes can obscure genome diversity signals, 

particularly at the strain level, where gene sequence variation could offer insights into biotic and 

abiotic evolutionary pressures on these genomes. To better capture ‘intra-genome’ diversity 

(microdiversity), we developed a wet lab and informatics workflow that leverages long-reads to 

enhance our assembly capabilities16. For the informatics workflow (Fig 6A), we have 

benchmarked available tools to QC, error-correct and assemble virus long-reads, as well as use the 

Figure 5. Quantification of assembly errors using MEGAHIT, metaSPAdes, and IDBA-UD across five environments: soil, lake 
surface waters, surface and deep ocean, and the human gut. Each point represents an assembled sequence >5 kb and the % of 
bases of that are erroneous versus coverage.  
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SPAdes assembler to perform hybrid assembly. All contigs are then subsequently combined and 

dereplicated. Using this workflow, we have shown significant improvements in genome size (Fig 

6B), completeness (Fig 6C) and microdiversity (Fig 6D) metrics compared to short read-based 

viromes and our previous VirION method. 

 

iVirus tools on KBase 

Studies of environmental viruses, and their influence on mortality, gene transfer and metabolic 

reprogramming are currently limited by existing informatics tools. Our project has worked to 

democratize the existing “iVirus” analysis suite by implementing its core components on DOE’s 

KnowledgeBase (KBase) and to develop new analytical tools that enable better host prediction for 

newly discovered viruses. We have successfully ported several iVirus apps from the CyVerse 

Cyberinfrastructure, including; a virus identification tool (VirSorter17), viral classification 

(vConTACT218), and a virus-host prediction tool based on a new analytical framework 

(VirMatcher, https://bitbucket.org/MAVERICLab/virmatcher/) into KBase. This virus-host 

prediction tool aggregates several existing virus-host methodologies and uses a probabilistic 

scoring framework to generate a confidence score. Taken together, these apps form a complete, 

viral ecogenomics toolkit and are available as a public KBase narrative 

(https://kbase.us/n/75811/85/). Updates to these KBase-enabled iVirus tools have been 

Figure 6. VirION2 informatics pipeline and comparison of virus genome properties between short-read and ‘long-read-enhanced’ 
viromes. (A) Workflow to produce ‘enhanced viromes’, in which Spades, hybrid and long-read (OLC) viruses are combined to 
maximize the recovery of virus signals. (B) Cumulative Distribution Function (CDF) plot depicting the frequency (y-axis) of virus 
genomes according to genome length (measured in kilo basepairs (kbp), x-axis) between three assembly strategies. (C) 
Cumulative Distribution Function (CDF) plot depicting the frequency (y-axis) of virus genomes according to genome 
‘completeness’ (measured in %, x-axis) between three assembly strategies. (D) Cumulative Distribution Function (CDF) plot 
depicting the frequency (y-axis) of virus genomes according to genome microdiversity per genome (measured as π, x-axis) 
between three assembly strategies. 

 

https://bitbucket.org/MAVERICLab/virmatcher/)%20into
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concomitant with other, recently introduced, virus-focused tools within KBase, such as DRAM-v, 

which provides viral annotation and identifies auxiliary metabolic genes19. Together, these tools 

allow generators of environmental metagenome and virome datasets to produce far richer, more 

contextualized analyses. 

 

Phanotate: virus gene calling software 

Several methods have been developed to identify 

open reading frames (ORFs) from bacterial 

genomes, and these methods are also typically used 

to identify ORFs in virus/phage genomes as well. 

Phage genomes, however, have certain complexities 

that bacterial ORF finders do not consider including 

1) an extremely high coding density, 2) a higher 

frequency of overlapping genes, and 3) more 

instances of ORFs contained entirely within other 

ORFs. Therefore, these phage-specific genome 

structural features are often missed by bacterial-

specific gene callers. With collaborators at SDSU, 

viral genome experts at LLNL developed 

Phanotate20, the first gene caller specifically 

designed for viral/phage genomes. Phanotate 

makes a weighted graph representation of possible 

Figure 7. Overview of the viral ecogenomics workflow in KBase supported by the LLNL SoilSFA team. Data sources (outlined in 
red) can be provided by the user or retrieved from public endpoints. A list of apps (outlined in blue) is searchable and filterable, 
with “virus” as one such filter in order to quickly find virus-focused tools. User annotations, or notes (outlined in purple) are 
provided within the Narrative as a means of providing context and background to the analyses. Finally, results (outlined in 
green) display data generated by the apps. Below is the pipeline where a user can process a viral dataset from raw reads to 
QC and assembly, viral identification and cleanup, taxonomic annotation, and matching virus-host pairs (not pictured). KBase-
powered iVirus apps integrate with existing KBase apps for a complete pipeline, allowing KBase users the option of selecting 
different apps for the different stages of processing (e.g. different assemblers, quality control, microbial binning tools). 

 

 

 

Figure 8. Overlap of predicted gene calls of 2,133 viral 
genomes from 3 gene callers developed for prokaryotes 
(GeneMarkS, Glimmer and Prodigal) and one designed for 
viruses (Phanotate). Many ORFs (82%) were found by all 
gene callers, however, Phanotate had the most uniquely 
identified ORFs. 
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ORFs, to maximize the optimal path through the genome while allowing for overlaps and nested 

genes. Phanotate was validated against 2,133 phage genomes in NCBI, and compared with results 

from three popular bacterial gene finders Glimmer21, GeneMarkS22, and Prodigal23. 239,072 total 

ORFs were identified among the 4 methods, and there was an agreement in 82% of those gene 

calls (Fig 8). Phanotate found over 15,000 additional ORFs missed by the bacteria-centric 

methods. Computational validation of these new gene models is difficult – proteomics would be 

ideal however public peptide databases typically only report peptides matching predicted gene 

models. Instead, Phanotate gene calls were compared against short reads from >94,000 public 

metagenomes and validated as likely ORFs due to their higher than expected sequence 

conservation among these diverse datasets, indicating they are under selective pressures, while 

other phage regions not predicted to encode protein were less likely to be conserved.  

PhATE/MultiPhATE virus annotation pipeline 

With the ever-increasing volume 

of phage genomes being 

generated from high-throughput 

sequencing data, there is a need 

to more rapidly annotate these 

genomes and make meaningful 

comparisons of the results. Our 

SFA viromics team has 

developed the MultiPhATE24 

annotation pipeline, which 

structurally and functionally 

annotates phage genomes using 

public and/or custom databases, 

and have included comparative genomics tools to analyze the annotations.  

The MultiPhATE workflow allows a used to select one or several gene calling algorithms 

(including Phanotate for virus-tuned gene calls), and a priority or consensus set of gene calls can 

be retained (Fig 9). Next, these gene calls are compared against several functional databases 

including NCBI, VOGs/pVOGs, Swiss-Prot, etc using both nucleotide (blastn) and amino acid 

(blastp, HMMer suite) tools. Recently, we release an updated version, MultiPhATE225, with 

several improvements over the original algorithm. These include more options for parallelization 

to rapidly annotate large collections of viral genomes. The new workflow also enables the 

discovery of auxiliary metabolic genes (AMGs) with databases such as Carbohydrate-active 

enzymes database (CAZy), National Center for Biotechnology information protein database 

(NCBI NR), and Swiss-Prot. 

Trait-Based Modeling 

One of the goals of the LLNL Soil Microbiome SFA is to build and use a trait-based model (TBM) 

that evaluates links between ecophysiology and soil C dynamics by combining the recently 

developed processing scaling theory SUPECA26 and Dynamic Energy Budget (DEB) theory27. 

This model will allow prediction of biophysical, metabolic and life history traits of bacteria and 

archaea and their representation in a consistent and theory-based modeling framework. It will also 

help to identify key fitness traits at the genome or community level and allow model-based 

hypothesis testing and generation in a reproducible manner. 

Figure 9. The MultiPhATE workflow begins with genome/contig nucleotide 
sequences. It proceeds through gene-calling and functional annotation using 
several custom or public databases. Finally, a comparative genomics workflow is 
included to compare functional annotations from multiple phage genomes.  

 

 

 



2021 Performance Metric Quarterly Report 3  Microbes Persist - LLNL Soil SFA 

9 

 

Bacterial growth efficiency as a species trait 

Bacterial growth efficiency (BGE) is the 

amount of carbon incorporated into 

biomass versus carbon respired to the 

atmosphere and it reflects dynamic 

allocation of a microbe’s energy budget 

to growth under given thermodynamic 

constraints. BGE is an important 

parameter in ecosystem models and 

controller of carbon decomposition in 

soil. Its central role in pathways of 

mineral-associated organic matter 

formation has been postulated for 

distinct soil compartments, e.g. in the 

rhizosphere, formation should primarily 

occur through an in vivo microbial turnover pathway and favor carbon substrates that are first 

biosynthesized with high carbon-use efficiency. In order to understand variation in BGE, we are 

using the dynamic energy budget (DEB) theory to predict BGE, which allows for a 

thermodynamically consistent treatment of the balance between structural maintenance, structural 

growth and extracellular enzyme production in microbial metabolism. We used microTrait (a 

genomes-to-traits workflow), allometric scaling theory and biophysical modeling to constrain 

DEB parameters for substrate uptake, assimilation efficiency, depolymerization rates and enzyme 

allocation, protein synthesis, and maintenance rates. We then conducted batch simulations for 39 

bacterial isolates individually grow on 84 root exudate compounds from the wild oat grass Avena 

barbata. We found a significant association between rhizosphere response group and BGE; the 

BGE of rhizosphere-adapted bacteria was consistently higher across substrate classes (Fig 10). 

DEB predicts a substantial amount of variation in BGE, both at broad (class, ~20%) and fine 

(strain, ~40%) taxonomic levels. While resource type was a weak predictor across species (~6%), 

it explained ~50% of variation in BGE within species. Our study suggests that genome-level 

information together with dynamic energy budget trait-based modeling can resolve variations in 

BGE within and across microbial communities that should be considered in ecosystem models.  

Ohm’s law applied to microbial biogeochemistry  

A central challenge in modeling microorganisms and 

the biogeochemical process they carry out in 

complex systems such as soil is to represent diverse 

metabolic pathways and their interactions. 

Traditionally, this is achieved through the 

application of Monod kinetics, or the law of mass 

action. The use of Monod kinetics is simple, but 

comes with the risk of scaling inconsistency among 

parameters when increasing from single to many 

metabolic pathways. In contrast, the law of mass 

action is much more coherent and rigorous, but is 

mathematically very difficult for upscaling as the 

number of metabolic pathways and microbial 

Figure 10. DEB predictions of bacterial growth efficiency for isolates 
(positive responder = rhizosphere isolate, negative responder = bulk 
soil isolate) and root exudate compounds, grouped into six classes. 

Figure 12. Monod kinetics can be interpreted using 
Ohm’s law. Example in red box depicts the enzymatic 
decomposition of pyruvate into acetyl-coA and CO2.  
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populations increase. Our analyses indicate that the Monod kinetics can be interpreted using the 

analogy of Ohm’s law, where, for the case of non-limiting substrate, reaction velocity 𝑣 is 

analogous to an electric current that is equal to enzyme abundance 𝐸 (i.e., the “symbolic” voltage) 

divided by the mean first passage time (i.e., the “symbolic” resistance) that is defined by enzyme 

trait 𝑟𝐸 (the inverse of maximum reaction rate 𝑣𝑚𝑎𝑥) and the inverse of substrate delivery rate 

1 𝑘𝑓𝑆⁄  (Figure 11). The Ohm’s law analogy enables an intuitive yet clear understanding of the 

physical meanings of substrate kinetics parameters. Its extension to a chain of enzymes enables us 

to quickly infer the tradeoffs between the length and catalytic speed of a metabolic pathway, and 

its bioenergetic efficiency (i.e. the amount of Gibbs free energy extracted versus the amount of 

Gibbs free energy that can be released upon the full oxidation of the substrate): in other words, the 

longer the metabolic pathway, the slower its metabolic catalysis rate and the higher its bioenergetic 

efficiency. Additionally, combining Ohm’s law with thermodynamics allows us to derive a more 

comprehensive representation of temperature sensitivity of enzyme-catalyzed reactions. This new 

representation shows that temperature sensitivity of a metabolic pathway consists of (1) kinetic 

temperature sensitivity modulated by substrate availability, (2) thermodynamic temperature 

sensitivity of the chemical reaction of interest, (3) transition state temperature sensitivity, and (4) 

enzyme conformation temperature sensitivity. In comparison, the more standard (and commonly 

used) macromolecular rate theory only accounts for components (3) and (4) of our new 

mathematical representation. When applied to facultative anaerobes, our Ohm’s law analogy 

shows why fermentation is preferred over aerobic respiration under high glucose supply, therefore 

successfully explaining the Warburg and Crabtree effect28 observed in biological systems. 

Summary 

The LLNL Microbes Persist Soil Microbiome SFA uses a multi-domain approach to identify the 

microbial and viral inhabitants of soil ecosystems, providing a comprehensive understanding of 

biotic interactions, ecophysiological traits, and the fate of microbiome biomass organic carbon. In 

both our empirical research and methods development, we are pushing the boundaries of genome 

resolved metagenomics, viromics, quantitative stable isotope probing, and trait-based modeling – 

four powerful and highly synergistic computational approaches. This allows us to make 

connections between genomically resolved traits, activity, and carbon transformation, giving us an 

unprecedented picture of the most relevant traits and taxa in soil ecosystems.  

 Currently, our ability to analyze microbial activities in environmental microbiomes is strongly 

data limited, for two reasons: 1) there are very few techniques that link performance to genotype 

in nature, and 2) those that are available – like qSIP – are not yet fully standardized procedures 

that support rigorous cross-site comparisons and comparison to model output.  Our efforts to test 

the sensitivity, precision, and statistical power of qSIP will allow it to be used more broadly, and 

with lower costs. New metagenomics computation and curation approaches, such as MetaHipMer 

and FixAME will streamline assembly and interpretation of large numbers of metagenome 

assembled genomes. Tools in the iVirus package, that we have recently incorporated into BER’s 

KBase, are also making it far more tractable to extract ecological patterns of viral sequences from 

complex environmental datasets. Finally, incorporating metrics of microbial function, such as the 

population metrics measured by qSIP, will improve biogeochemical models. Trait-based modeling 

is a promising way to integrate information at the genome level (e.g. minimum generation times, 

substrate utilization capacity, transport kinetics, biomass chemistry, and phage covariance, etc.) to 

predict emergent processes like total microbial biomass, community composition, turnover and 

respiration in a way that can dynamically scale from ‘omics data to system-level fluxes. 
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