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Project Goals: We are finalizing the construction of a fully recoded 3.97 Mb Escherichia 
coli genome that relies on the use of only 57 codons. For this aim, the genome was 
previously computationally designed, synthesized, and assembled into 87 segments. In the 
final steps of genome construction, we combine and optimize these segments in vivo to 
assemble the fully recoded, viable genome.  
 

We present the construction of a fully recoded, 57-codon Escherichia coli genome, in 
which seven codons are replaced with synonymous alternatives in all protein-coding genes. For 
this aim, the entirely synthetic recoded genome was assembled as 87 50-kb episomal segments, 
individually tested for functionality, and then integrated into the genome. Developing a 
specialized integration system and optimizing our workflow enhanced integration efficiency to 
100% and resulted in an order of magnitude increase in construction speed. We are now 
combining recoded clusters with a novel technology that builds on our latest developments in 
recombineering and CRISPR-associated nucleases1,2. 

In parallel with genome construction, we developed novel experimental methods to 
identify fitness-decreasing changes and troubleshoot these cases. Leveraging massively parallel 
genome editing and accelerated laboratory evolution3 allowed us to correct partially recoded 
strains’ fitness within days.  

As we approach the final assembly of a virus-resistant E. coli genome, we also implement 
dependency on non-standard amino acids and encoding modules for stringent biocontainment 
and enhanced virus resistance. 

In sum, our work will soon I.) demonstrate the first 57-codon organism, II.) 
establish a tightly biocontained and virus-resistant chassis for new-to-nature protein 
production, and III.) open a new avenue for the bottom-up synthesis and refactoring of 
microbial genomes, both computationally and experimentally. 
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