Characterization and Stress Response of Monolignol *p*-Hydroxybenzoyltransferase in Poplar

Yunjun Zhao^{1,2}* (yunjunzhao@bnl.gov), Xiao-HongYu,^{1,3} Pui-Ying Lam,⁴ Kewei Zhang,^{1,5} Yuki Tobimatsu,⁴ Chang-Jun Liu,^{1,2} and **Jay Keasling**²

¹Biology Department, Brookhaven National Laboratory, Upton, NY; ²Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA; ³Present address: Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, NY; ⁴Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Japan; ⁵Present address: Institute of Plant Genetics and Developmental Biology, Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China.

www.jbei.org

Project Goals: Establish the scientific knowledge and new technologies to transform the maximum amount of carbon available in bioenergy crops into biofuels and bioproducts.

Lignin in many species including *Populus* spp. is decorated with *p*-hydroxybenzoate. However, the molecular basis for such structural modification remains largely undetermined. Here, we report the identification and characterization of a Populus BAHD family acyltransferase that catalyzes monolignol p-hydroxybenzoylation, thus controlling the formation of phydroxybenzoylated lignin structures. With in vitro systematic screening and biochemic characterization of *Populus* BAHD family acyltransferases, we reveal that a *Populus* acyltransferase PHBMT1 kinetically preferentially uses p-hydroxybenzoyl-CoA to acylate syringyl lignin monomer sinapyl alcohol in vitro. Consistently, disrupting PHBMT1 in Populus via CRISPR–Cas9 gene editing nearly completely depletes *p*-hydroxybenzoates of stem lignin; conversely, overexpression of PHBMT1 enhances stem lignin p-hydroxybenzoylation, suggesting that PHBMT1 functions as a prime monolignol p-hydroxybenzoyltransferase in planta. Altering lignin p-hydroxybenzoate modification substantially changes the lignin solvent dissolution rate, indicative of its structural significance on lignin physicochemical properties. *PHBMT1* is highly induced with mechanical stress or gravistimulation along with the tension wood formation. Altering lignin p-hydroxybenzoylation changes plant's autotropism and gravitropism behaviors. Identification of monolignol p-hydroxybenzoyltransferase offers a valuable tool for tailoring lignin structure and physicochemical properties and for engineering the industrially important platform chemical in woody biomass.

Publications

1. Zhao, Y., *et al.* (2021) Monolignol acyltransferase for lignin *p*-hydroxybenzoylation in *Populus*. *Nature plants* 7, 1288-1300

2. Zhao, Y., *et al.* (2021) The Inducible Accumulation of Cell Wall-Bound *p*-Hydroxybenzoates Is Involved in the Regulation of Gravitropic Response of Poplar. *Front Plant Sci* 12, 755576

Funding statement: This research was supported by Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.