The Biological and Environmental Research (BER) program supports transformative science and scientific user facilities examining complex biological, Earth, and environmental systems for clean energy and climate innovation.

BER research seeks to understand the fundamental biological, biogeochemical, and physical principles needed to predict a continuum of processes occurring across scales, from molecules and genomes at the smallest scales to environmental and Earth system change at the largest scales. This research—conducted at universities, U.S. Department of Energy (DOE) national laboratories, and research institutions across the country—is contributing to a future of reliable, resilient energy sources and evidence-based climate solutions.

Essential to these missions are research practices and a scientific workforce that embrace belonging, accessibility, justice, equity, diversity, and inclusion. As part of DOE-wide initiatives to advance these values, BER is pursuing new avenues to engage historically underrepresented individuals and institutions and piloting new models of support for research and training.

BER BY THE NUMBERS

FISCAL YEAR 2022

- **$815 MILLION**
 Total Budget
- **MORE THAN 185**
 Universities, Nonprofits, and Research Institutions and 13 DOE National Laboratories Conduct BER Basic Research
- **1,337 PUBLICATIONS**
 in 424 Journals
- **MORE THAN 4,100**
 Users at 3 User Facilities
Bioenergy
Provides genomics-based insights needed to produce and deconstruct renewable plant biomass and convert it to sustainable fuels, chemicals, and other bioproducts.

Biosystems Design
Accelerates the ability to securely design, build, and control plants and microbes for beneficial purposes such as clean energy, biomaterials, and carbon sequestration.

Environmental Microbiome
Develops a process-level understanding of the impacts of plant and soil microbial communities on the cycling and fate of carbon, nutrients, and contaminants in the environment.

Computational Biology
 Integrates capabilities, including artificial intelligence and machine learning, tailored to large-scale data science investigations of plant and microbial systems.

Bioimaging Science
Advances multifunctional technologies, including quantum-enabled approaches, to image, measure, and model key metabolic processes in microbial cells and plant tissues.

Joint Genome Institute
The JGI user facility is the preeminent resource for sequencing plants, fungi, algae, microbes, and microbial communities foundational to energy and environmental research. With nearly 1,600 users worldwide, JGI sequences more than 450 trillion DNA bases per year. Beyond sequencing, JGI provides state-of-the-science capabilities for metabolomics, data synthesis, and analysis.

jgi.doe.gov

Structural Biology and Imaging Resources
BER supports unique crystallography, scattering, spectroscopy, imaging, and cryogenic electron microscopy and tomography capabilities at DOE synchrotron and neutron user facilities. The spatial and temporal resolutions provided by these resources enable unprecedented characterization and imaging of interactions among plants, microbes, and the environment.

www.berstructuralbioportal.org

Bioenergy Research Centers
Bringing together top scientists from multiple disciplines, DOE's four Bioenergy Research Centers (below) are advancing the basic science underlying commercial production of biofuels and bioproducts. Research is focused on sustainable production and development of plant feedstocks and their deconstruction and conversion to fuels, chemicals, and other useful products.

- Center for Advanced Bioenergy and Bioproducts Innovation, led by the University of Illinois at Urbana-Champaign
- Center for Bioenergy Innovation, led by Oak Ridge National Laboratory
- Great Lakes Bioenergy Research Center, led by the University of Wisconsin–Madison
- Joint BioEnergy Institute, led by Lawrence Berkeley National Laboratory

genomicscience.energy.gov/bioenergy-research-centers/
The Earth and Environmental Systems Sciences Division supports research to characterize and understand feedbacks between Earth and energy systems, including studies on atmospheric physics and chemistry, ecosystem ecology, and biogeochemistry. Research also includes developing and validating Earth system models that integrate information on the biosphere, atmosphere, terrestrial land masses, oceans, sea ice, land ice, subsurface, and human components.

Environmental System Science
Deepens understanding of terrestrial ecosystems, watersheds, and coastal regions by investigating their interdependent microbial, biogeochemical, ecological, hydrological, and physical processes across space and time scales.

Earth and Environmental Systems Modeling
Extends the frontiers of Earth system knowledge, with emphasis on the complex interactions of its natural and human components and climate system processes, centered around advanced computational modeling and methods that include the Energy Exascale Earth System Model, multimodel approaches, data-driven machine learning, and discovery-based visualization.

Data Management
Develops multiscale visualization and analysis methods for observational and model-generated data to benefit the scientific community.

Atmospheric Research
Explores the interdependencies of clouds, atmospheric aerosols, and precipitation that influence Earth's radiation balance, advancing insights that improve climate and Earth system models.

Atmospheric Radiation Measurement User Facility
ARM supports highly instrumented ground stations, mobile measurement resources, and aerial vehicles to continuously measure cloud and aerosol properties and their impacts on Earth's energy balance. ARM's long-term observations provide an unparalleled resource for examining atmospheric processes and evaluating Earth system model performance.

Environmental Molecular Sciences Laboratory
EMSL provides users with integrated experimental and computational resources for discovery and technological innovation in the environmental molecular sciences. Researchers use EMSL to extend understanding of the physical, biogeochemical, chemical, and biological processes that underpin energy and environmental challenges.

Urban Integrated Field Laboratories
Urban IFLs are dedicated to developing the science framework, observational tools, and prediction capabilities needed to understand how urban areas interact with the climate system. The four Urban IFLs (below) will provide the knowledge necessary to inform equitable climate and energy solutions that can strengthen community-scale resilience across urban landscapes.

- **Baltimore Social-Environmental Collaborative**, led by Johns Hopkins University
- **Community Research on Climate and Urban Science**, led by Argonne National Laboratory
- **Southeast Texas**, led by University of Texas–Austin
- **Southwest Urban Corridor**, led by Arizona State University

ess.science.energy.gov/urban-ifls/
ASSOCIATE DIRECTOR OFFICE
Dorothy Koch, Associate Director, dorothy.koch@science.doe.gov

Senior Technical Advisors
- Joseph Graber
 joseph.graber@science.doe.gov
- Mike Riches
 mike.riches@science.doe.gov
- Tristram West
 tristram.west@science.doe.gov

Business Analyst
- Kate Garmer (Contractor)
 kate.garmer@science.doe.gov

Program Analyst
- Leslie Madison
 leslie.madison@science.doe.gov

Management Analyst
- Lauren Brunk Cadiz (Contractor)
 lauren.brunk@science.doe.gov

BIOLOGICAL SYSTEMS SCIENCE DIVISION (BSSD)
Todd Anderson, Director, todd.anderson@science.doe.gov

Foundational Genomics Research
- Pablo Rabinowicz
 pablo.rabinowicz@science.doe.gov
- Dawn Adin, dawn.adin@science.doe.gov
- Shing Kwok, shing.kwok@science.doe.gov
- Resham Kulkarni
 resham.kulkarni@science.doe.gov
- Vijay Sharma
 vijay.sharma@science.doe.gov
- Kari Perez
 kari.perez@science.doe.gov
- Elizabeth White, elizabeth.white@science.doe.gov

Computational Biosciences
- Ramana Madupu
 ramana.madupu@science.doe.gov
- Resham Kulkarni
 resham.kulkarni@science.doe.gov

Environmental Genomics
- Boris Wawrik, boris.wawrik@science.doe.gov
- Dawn Adin, dawn.adin@science.doe.gov

Bioenergy Research Centers
- Shing Kwok, shing.kwok@science.doe.gov

Biomolecular Characterization and Imaging Science
- Amy Swain, amy.swain@science.doe.gov
- Paul Sammak, paul.sammak@science.doe.gov

Biosystems Design
- Pablo Rabinowicz
 pablo.rabinowicz@science.doe.gov

Human Subjects Protection
- Elizabeth White, elizabeth.white@science.doe.gov

BSSD Small Business Innovation Research
- Boris Wawrik, boris.wawrik@science.doe.gov

BSSD Scientific Program Specialist
- Meredith Rutledge
 meredith.rutledge@science.doe.gov

USER FACILITY
Joint Genome Institute
jgi.doe.gov
- Ramana Madupu
 ramana.madupu@science.doe.gov

EARTH AND ENVIRONMENTAL SYSTEMS SCIENCES DIVISION (EESSD)
Gerald Geernaert, Director, gerald.geernaert@science.doe.gov

Atmospheric System Research
- Shaima Nasiri, shaima.nasiri@science.doe.gov
- Jeff Stehr, jeff.stehr@science.doe.gov
- Scott Collins (Lab Detaillee)
 scott.collins@science.doe.gov

Environmental System Science
- Daniel Stover, daniel.stover@science.doe.gov
- Paul Bayer, paul.bayer@science.doe.gov
- Brian Benscoter
 brian.benscoter@science.doe.gov
- Daniel Winkler, daniel.winkler@science.doe.gov
- Beth Drewniak (Lab Detaillee)
 beth.drewniak@science.doe.gov

Earth and Environmental Systems Modeling
- Renu Joseph, renu.joseph@science.doe.gov
- Bob Vallario, bob.vallario@science.doe.gov
- Xuqing Davis, xuqing.davis@science.doe.gov

Data Management
- Justin Hnilo, justin.hnilo@science.doe.gov

EESSD Small Business Innovation Research
- Justin Hnilo, justin.hnilo@science.doe.gov
- Sally McFarlane, sally.mcfarlane@science.doe.gov

EESSD Scientific Program Specialist
- Andrew Flatness
 andrew.flatness@science.doe.gov

USER FACILITIES
Atmospheric Radiation Measurement
User Facility
arm.gov
- Sally McFarlane, sally.mcfarlane@science.doe.gov

Environmental Molecular Sciences Laboratory
emsl.pnl.gov
- Paul Bayer, paul.bayer@science.doe.gov

May 2024