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Artificial intelligence (AI), machine learning (ML), 
and high-performance computing (HPC) are 
poised to transform biological research, spurring 
innovation in biotechnology and biosystems design. 
This transformation will bring an explosion of new 
capabilities to control the expression of genomic 
information in living organisms and harness that 
information to invent new biobased technologies 
( Jinek et al. 2012; NASEM 2025).

A recent report by the National Security Commission 
on Emerging Biotechnology states the widespread 
impacts of biotechnology  “are not just matters of 
scientific achievement; they are questions of national 
security, economic power, and global influence” 
(NSCEB 2025). The U.S. Department of Energy 
(DOE) national laboratories are the world’s greatest 
scientific infrastructure and are uniquely positioned 
to provide the resources and domain expertise needed 
to usher in this new era of AI-driven biotechnology, 
including creating and analyzing massive, open, and 
AI-ready datasets. 

To better understand the opportunities and basic 
research needs at the interface of AI and biology, the 
Advanced Scientific Computing Research (ASCR) 
and Biological and Environmental Research (BER) 
programs in the DOE Office of Science (SC) orga-
nized a workshop on Envisioning Frontiers in AI and 
Computing for Biological Research (see Appendix A: 
Workshop Agenda, p. 49, and Appendix B: Workshop 
Attendees, p. 51). This workshop explored research 

Executive  
Summary

intersections between BER and ASCR that will 
harness the power of AI and exascale computing to 
advance biotechnology. 

These new technologies will unleash and empower 
a new U.S. bioeconomy by (1) advancing predictive 
understanding and manipulation of biological systems, 
(2) enabling researchers to organize and simulate 
biological processes across vast scales, and (3) facil-
itating the discovery and design of new behaviors, 
mechanisms, and biological processes relevant to DOE 
missions. The workshop culminated in four priority 
research directions (see Fig. ES.1, p. iv) to guide future 
research and development within SC programs: Mul-
timodal Data Assembly, Multiscale Biosystems Simu-
lation, AI-Enabled Drivers for Experimental Systems, 
and Novel Algorithms for Genomics.

Integrating computation, experimentation, and 
next-generation automated technologies is expected 
to lead to the discovery and design of new biological 
behaviors and mechanisms. The workshop identified 
ways advanced computational methods can impact this 
mission by exploring novel algorithms, multiscale and 
multimodal modeling, data fusion, foundation models, 

Applying the full potential of artificial intelligence, 
machine learning, and computational sciences to 
biological research will drive transformative discov-
eries and enable unprecedented capabilities.
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digital twins, verification and validation, experiment 
design, and automated laboratories.

 Participants assessed the current state, trends, and 
AI challenges at the interface of biology and compu-
tational science to identify new high-impact research 
opportunities with significant potential economic and 
environmental benefits. 

Fig. ES.1. Priority Research Directions. Workshop participants identified four priority research directions at the intersection 
of biology and AI to advance DOE missions and the U.S. bioeconomy.

Progress can be made by capitalizing on the profound 
computational capabilities spearheaded through 
ASCR investments in exascale architectures, HPC 
platforms, mathematics and computer science, and the 
wealth of BER-supported efforts to collect and analyze 
complex biological data at a scale unmatched by any 
other government or academic entity.



U.S. Department of Energy Office of Science				                			             January 2026 1

Background
Within DOE, ASCR has led the development of new 
artificial intelligence (AI), applied math, and com-
puter science capabilities, and has pioneered exascale 
computing architectures and the application of these 
groundbreaking machines across a host of scientific 
applications. The Argonne Leadership Computing 
Facility (ALCF), Oak Ridge Leadership Computing 
Facility (OLCF), and the National Energy Research 
Scientific Computing Center (NERSC) have been at 
the forefront of using high-performance computing 
(HPC) to tackle some of the most challenging scien-
tific problems facing DOE’s energy mission.

BER is a leader in large-scale biological data generation 
and cutting-edge research designed to understand the 
mechanisms and processes underlying complex biologi-
cal phenomena, with biotechnology innovation as a pri-
mary goal. The program supports crosscutting synthesis 
across biological fields as well as user facilities and sci-
entific resources that extract, organize, and classify bio-
logical data. These facilities and capabilities include the 
DOE Joint Genome Institute, Environmental Molecular 
Sciences Laboratory, DOE Systems Biology Knowl-
edgebase (KBase), National Microbiome Data Collab-
orative, and structural biology and imaging resources at 
DOE light and neutron facilities across the country. 

AI offers a unique and powerful opportunity to merge 
these two worlds. Advanced computer architectures 
operating at unprecedented scales and speeds, coupled 
with carefully designed new mathematical algorithms, 
can assemble and analyze vast biological data to extract 
meaning, reveal new insights, and autonomously guide 
experiments to both efficiently target knowledge gaps 

and home in on potentially groundbreaking processes 
and mechanisms (see Fig. 1.1, p. 2). Embedding deep 
biological knowledge into these algorithms will ensure 
computation provides scientifically relevant and mean-
ingful results that power new, more accurate predic-
tions and improve biosystems design.  By integrating 
computation, experimentation, and next-generation 
technologies, researchers aim to simulate and manipu-
late biological systems across scales.

The Envisioning Frontiers in AI and Computing for 
Biological Research workshop hosted by ASCR and 
BER assessed current trends and challenges at the inter-
section of biology and AI (see sidebar, Supplemental 

Chapter 1

Supplemental 
Materials
Prior to the workshop, attendees were invited 
to submit position papers discussing key 
challenges and opportunities in formulating, 
implementing, and applying AI/ML frame-
works for biological systems relevant to BER’s 
mission space. This community input shaped 
the workshop agenda, panelist discussions, 
and workshop report. 

The position papers and a report overview are 
available online:

• Position papers: DOI:10.2172/2512398

• Overview brochure: DOI:10.2172/2566160
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Materials, p. 1). The workshop identified four trans-
formative priority research directions (PRDs) that 
leverage ASCR’s computational expertise and BER’s 
leadership in biological systems research to advance 
DOE missions and the U.S. bioeconomy. Ch. 2 (see 
p. 11) describes the PRDs; Ch. 3 (see p. 25) discusses 
shared themes around data generation; Ch. 4 (see 
p. 29) discusses crosscutting focus areas for AI, includ-
ing novel algorithms, multiscale multimodal modeling, 
data fusion, foundation models, digital twins, AI ver-
ification and validation, experiment design, and auto-
mated laboratories (see Fig 1.2, p. 3). 

1.1 Overview of Computation 
and Mathematics 
Capabilities in DOE 
For over 70 years, DOE and its predecessors have led 
the nation’s development and application of advanced 

mathematics and computer science research to address 
the world’s most formidable scientific challenges 
(ASCAC 2020). This work has pioneered advanced 
computational techniques in optimization and core 
mathematics, including differential equations, linear 
algebra, discrete mathematics and graph theory, as well 
as core computer science areas (i.e., massively parallel 
processing, scalable input/output, large-scale data 
analysis and visualization, and network protocols). 
Taken together, DOE research, technical advances, 
and leadership have produced groundbreaking results 
in various fields, including fluid and solid mechanics, 
materials sciences, computational chemistry, and bio-
logical modeling.

In 2023, the facilities subcommittee for the Advanced 
Scientific Computing Advisory Committee (ASCAC) 
was charged with assessing the necessity for new or 
upgraded facilities to ensure the Office of Science 

Fig. 1.1. Building a Legacy of Biological Research. In the last 50 years, researchers across the BER portfolio have made 
groundbreaking discoveries with everyday applications, facilitating the scientific revolutions that have powered U.S. leader-
ship in biology.
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Fig. 1.2. Crosscutting Focus Areas. Workshop participants identified eight key focus areas spanning the priority research 
directions (PRD). These focus areas represent strategic opportunities for collaboration across ASCR and BER.
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(SC) remains at the forefront of scientific discovery. 
The resulting report emphasized that ASCR systems 
are essential for maintaining this leadership, especially 
as science becomes increasingly interdisciplinary, 
integrated, and digital (ASCAC 2024). These facili-
ties enable complex and diverse workloads running 
on petaflops and exascale supercomputers, many 
with hundreds of thousands of cores and hundreds of 
gigabytes of graphics processing unit (GPU) mem-
ory. As several DOE science programs produce large 
amounts of data, ASCR facilities are best utilized as a 
large, integrated ecosystem supporting SC programs 
alongside other ASCR efforts in software, algorithms, 
workforce, and science application components 
(ASCAC 2024).

Recent breakthroughs in DOE-based mathematics 
and computer science (U.S. DOE 2023a) have been 
instrumental in advancing AI across science and engi-
neering. These innovations are ready to deliver reli-
able AI methodologies that will deepen fundamental 
understanding of biological processes. However, the 
complex, multiscale nature of biological dynamics is 
difficult to bridge. In addition, the underlying dynamic 
equations are unknown. Crosscutting, interdisciplinary 
AI research offers a unique opportunity to overcome 
these challenges by coupling experimental measure-
ments directly with data from simulations and data-
driven models.

1.2 Application Targets 
Within AI for Biology
ASCR is developing advanced exascale compute 
infrastructure, new algorithms, new data paradigms, 
and mathematical abstractions. These capabilities—
particularly in AI—can address numerous challenges, 
knowledge gaps, and bottlenecks impacting BER’s mis-
sion of advancing understanding of complex multiscale 
biological systems and their interactions. Discussions 
of these capabilities built on previous workshops 
held by ASCR and BER that explored how AI can 
advance biology research (see sidebar, Insights from 
Previous DOE Workshops on AI and Biology, p. 5). 
Critically, AI can improve the efficiency and efficacy 
of the laboratory and field experiments that feed AI 

analyses—creating a beneficial feedback loop to rap-
idly address key challenges. 

Workshop participants identified five target areas 
in which AI could accelerate biological insights:  
(1) functional genomics; (2) metabolic engineering 
and synthetic biology; (3) microbiome analysis and 
engineering; (4) ecosystems analysis, prediction, and 
manipulation; and (5) data integration and knowledge 
representation.

Functional Genomics
Determining and manipulating protein function is a 
fundamental activity in biology, providing insights 
into the capabilities and design of protein molecules 
that act as sensors, motors, and biochemical catalysts. 
Accurate annotation requires solutions to many sig-
nificant challenges the biological research community 
faces today (Liu et al. 2025), including (1) ensuring 
that functional annotations are accurately propagated 
across isofunctional protein families; (2) correcting 
numerous errors in functional assignments in existing 
databases; (3) discovering completely novel functions 
that have not yet been characterized by molecular biol-
ogists or biochemists; and (4) considering biological 
context during annotation, since functions vary with 
context. AI tools, particularly agents and foundation 
models, either trained or fine-tuned using exascale 
machines, could help to determine the combination of 
techniques and evidence that can be used to properly 
annotate proteins.

Understanding metabolic processes, particularly in 
plants and microbes, is also central to DOE missions 
in biology, including understanding biologically medi-
ated chemical transformations and harnessing biology 
for the bioeconomy. However, detailed insights into 
gene and protein function are lacking, along with 
the ability to identify most metabolites and their 
intricate biological roles. Integrating computational 
approaches—such as deep learning–based spectral 
analysis, graph neural networks for metabolite interac-
tion prediction, and probabilistic inference methods—
can significantly enhance metabolite identification 
accuracy, deepen functional annotation, and enable 
more effective manipulation of metabolic processes. 
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Insights from Previous DOE 
Workshops on AI and Biology
Previous workshops held by ASCR and BER have explored how AI can advance biological research. This workshop 
builds upon insights from those efforts. In addition, a report led by the DOE national laboratories—Advanced 
Research Directions on AI for Science, Energy, and Security (U.S. DOE 2023a)—lays out a long-term vision for AI across 
DOE. 

2019
Workshop Report on Basic Research Needs 
for Scientific Machine Learning: Core 
Technologies for Artificial Intelligence
U.S. DOE 2019

Organizer: ASCR

Priority Research Directions

•	 Integrate domain knowledge to improve accuracy 
and reduce data needs.

•	 Develop methods to interpret complex models and 
quantify model differences.

•	 Ensure methods are robust and reliable.

•	 Handle large-scale, noisy, and uncertain 
data effectively.

•	 Integrate AI into simulation codes to improve 
performance and robustness.

•	 Address challenges in simulation-based decisions, 
such as efficient exploration, data combination, and 
human–automation interaction.

2023
Artificial Intelligence and Machine 
Learning for Bioenergy Research: 
Opportunities and Challenges
U.S. DOE 2023b

Organizers: BER and the DOE Bioenergy Technologies 
Office

Opportunities

•	 Accelerate discovery with AI to analyze vast data-
sets to identify patterns and trends, leading to 
faster breakthroughs.

•	 Optimize bioprocesses through automated exper-
imentation and AI-driven approaches to increase 
efficiency and yield.

•	 Engineer microorganisms with AI to design 
microbes with specific functions, such as producing 
biofuels or breaking down pollutants.

Challenges

•	 Address gaps in high-quality data, robust AI tools, 
and a skilled workforce by significantly investing 

in research and development and strengthening 
collaborations among academia, industry, and 
government agencies.

2024 
Artificial Intelligence for the Methane Cycle
U.S. DOE 2024

Organizer: BER’s Environmental System Science 
program

Opportunities

•	 Enhance the understanding and prediction of 
methane fluxes across various scales (from micro-
bial populations to global systems) by improving 
data collection and integration and enhancing 
model design and accuracy.

•	 Bridge gaps between top-down and bottom-up 
methane flux estimates by developing comprehen-
sive datasets and innovative modeling techniques 
and through infrastructure investment.

2024
A Unified Data Infrastructure for 
Biological and Environmental Research
BERAC 2024

Organizer: BER Advisory Committee

Goal: Review BER’s existing data infrastructure and 
recommend a strategy for next-generation data 
management.

Recommendations

•	 Ensure infrastructure developers engage with the 
research community during the design and devel-
opment process.

•	 Target high-impact science goals early to empower 
early adopters who can lead the charge on testing 
and leveraging the infrastructure.

•	 Use existing BER and ASCR resources as much as 
possible so new tools can focus on integration.

•	 Encourage use of new computer science methods 
(e.g., AI) through dedicated training, validation, and 
verification frameworks.

https://publications.anl.gov/anlpubs/2023/06/182628.pdf
https://publications.anl.gov/anlpubs/2023/06/182628.pdf
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Metabolic Engineering 
and Synthetic Biology
Once functions for proteins and molecules are 
unveiled, it is possible to rationally re-engineer and 
modulate those functions to harness and optimize 
biological systems for bioenergy production and 
to develop solutions that address energy and crop-
resilience challenges (Wu et al. 2025). This requires 
a deep mechanistic understanding of how a protein’s 
sequence impacts its function. AI has already been 
revolutionary in this space by massively advancing the 
protein folding challenge with AlphaFold (Abramson 
et al. 2024), but much work remains. Emerging pro-
tein language model–based approaches also show 
promising progress in this area (Zvyagin et al. 2023). 
Furthermore, this metabolic engineering must be 
accomplished in a manner that supports continuous 
uploads of and updates to new datasets and ongoing 
improvements in analysis and understanding of exist-
ing datasets.

By combining imaging produced by DOE’s world-
leading high-energy light sources with protein struc-
ture data and mechanistic modeling approaches across 
scales, BER can unleash the potential to design not just 
individual proteins, but whole pathways, whole organ-
isms, or even complex plant and fungal systems. This 
challenge requires a holistic understanding of these 
organisms at the mechanistic level, as well as knowl-
edge of thermodynamic and kinetic parameters. If 
these research efforts are aligned with ASCR strategies, 
[e.g., accelerating hyperparameter optimization by 
using a fraction of a training dataset (Yu et al. 2024)], 
they could aid in (1) making whole-cell simulations 
more scalable, (2) predicting parameters, (3) correct-
ing gaps in models, and (4) predicting modifications 
needed to achieve desired phenotypes.

Microbiome Analysis and Engineering
BER’s mission also requires an understanding of how 
microbiome systems function, how they are connected 
to growth conditions, and how they respond to per-
turbations and manipulations, including individual 
organism behavior, interspecies interactions, and inter-
actions with the environment (Knight et al. 2024). An 

additional challenge stems from the realization that 
many organisms in these systems cannot be isolated, 
and so even their genomic capabilities are uncertain. 
Knowledge of these systems can facilitate microbiome 
engineering, which will enable the optimization of 
individual microbes for particular steps in complex 
metabolic processes. If AI can operate in concert with 
microbiome modeling systems, digital twins, and cross-
scale frameworks to predict interactions and behavior 
and fill in missing information in incomplete genomes, 
microbiome design will be enabled. AI can also greatly 
facilitate efforts to isolate currently unculturable 
microbes. These AI systems will need to operate across 
multiple scales and data modalities given the size and 
complexity of most microbiome systems of interest.

Ecosystems Analysis, Prediction, 
and Manipulation
Beyond the microbiome level, the BER mission 
involves the study of a wide range of natural systems. 
Of particular interest are soils, which represent one 
of the most complex biological systems and are crit-
ical to the bioeconomy, crop resilience, and under-
standing ecosystem response to a range of conditions 
(Knight et al. 2024). Despite over 100 years of study, 
significant knowledge gaps remain concerning the 
molecular-scale mechanisms that drive organismal and 
interkingdom interactions and how these processes 
scale to shape ecosystem-level dynamics and responses 
to extreme weather ( Jansson and Hofmockel 2020), 
highlighting the tremendous complexity and multidis-
ciplinary challenges that must be overcome to under-
stand soil systems. 

Rapidly advancing a causal and mechanistic under-
standing of soil systems will require the integration of 
diverse datasets, including multidomain omics analy-
ses, abiotic controls, and plant communities, all within 
a 3D environment with physical limitations on flow 
and gas exchange. Tracking the associated spatial and 
temporal dynamics requires concerted analysis by lab-
oratory, field, and computational scientists. Multiscale, 
multimodal data integration can benefit from compu-
tational models capable of analyzing physicochemical 
and biological processes through the fusion of diverse 
analytical modalities, such as multiomics and sensor 

https://sciwheel.com/work/citation?ids=17871895&pre=&suf=&sa=0
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Fig. 1.3. Integrative Systems Biology. Understanding biological systems across scales of observation and complexity, from 
molecules to ecosystems, is a central challenge within BER that must be solved to discover the factors influencing function 
and processes within biological and environmental systems. 

data. Leveraging ASCR’s advanced computational 
tools can systematically address extensive laboratory 
and field datasets, enabling rigorous hypothesis gen-
eration (Mukhtar et al. 2022). These tools, such as 
accurate multiscale direct mathematical solvers for 
complex heterogeneous systems, are relevant across 
wide biological scales (see Fig. 1.3, this page) and can 
be coupled with domain-informed AI and parallelized 
deep networks optimized for exascale architectures. 
Using exascale machines, it is possible to train deep 
learning approaches from scratch, a method that could 
be used to scrutinize existing scientific understanding, 
quantify uncertainty, and identify knowledge gaps to 
improve models and their predictions.

Data Integration and 
Knowledge Representation
Data integration and knowledge representation form 
the foundation upon which all other biological under-
standing and discovery rest. The capacity to capture 
and synthesize data at scale, and to associate that data 
as evidence for consistently and accurately represented 

biological knowledge, is paramount to advancing biol-
ogy as a science. 

DOE is mobilizing its national laboratories to partner 
with industry, leveraging its unique role as a data gen-
erator (One Big Beautiful Bill Act 2025)—particularly 
through its user facilities—to curate and preprocess 
high-quality, AI-ready scientific data, which will then 
be made accessible to the research community along 
with specialized AI models via the American Science 
Cloud, a dedicated platform for scientific research, 
data sharing, and computational analysis.

Multiomics data from plants and microbes relevant 
to DOE now exist for billions of genes, vast numbers 
of biochemical molecules, millions of genomes, and 
hundreds of thousands of samples with inconsistent 
metadata, IDs, and analytical protocols (Anderson 
et al. 2025). Additionally, numerous competing 
ontologies represent knowledge of protein functions, 
metabolites, environments, cell types, and biological 
phenomena, with incomplete mapping to associated 
molecular representations (e.g., metabolites, reactions, 



8

Envisioning Frontiers in AI and Computing for Biological Research

January 2026							            U.S. Department of Energy Office of Science	

and macromolecules). AI can aid in reconciling and 
mapping ontologies to one another and in proposing 
relevant molecular representations. Advanced mathe-
matics will be instrumental in multimodal registration 
of differing imaging modalities and in identifying 
missing or redundant representations. Exascale-aware 
libraries can also help address needs for latency hiding, 
improved vectorization, threading, and strong scaling 
in tasks involving comparison between long molecular 
representations (ECP 2025).

While outside the scope of this workshop, data man-
agement is essential to biology. AI can benefit efforts to 
integrate and reconcile sample metadata; map, query, 
and interpret data; and prioritize data acquisition. 
ASCR’s report on Management and Storage of Scientific 
Data describes the benefit of data management to 
DOE research (U.S. DOE 2022a).

1.3 AI-Enabled Success 
Stories in Biology
AI-driven tools support the modeling of complex bio-
logical systems such as virtual cells, allowing scientists 
to simulate and study cellular processes in unprece-
dented detail. By combining computational power 
with biological insights, researchers can achieve more 
efficient and effective outcomes, driving innovation 
and addressing pressing global issues in health, energy, 
and the environment.

Protein Folding
One of the greatest recent successes of AI in biology 
was the development of AlphaFold and RoseTTAFold 
(Baek et al. 2021; Jumper et al. 2021), which led to a 
Nobel Prize in 2024 (see sidebar, DOE Powers Discov-
ery, p. 9). 

Although protein folding is one of the most complex 
challenges in biology, it became a target application 
and early success because of numerous advantages. 
First, all experimental protein structure data were 
aggregated, mapped, annotated, curated, and neatly 
organized in a single public repository, the Protein 
Data Bank (PDB; Burley 2025). The data were never 
cross-contaminated with computational predictions 
but were stably stored in a single public location for 

decades. The PDB facilitated the identification of 
promising, varied targets for novel structure deter-
mination, which significantly contributed to protein 
structure discovery. Second, Critical Assessment of 
Structure Prediction (CASP) contests led to the cre-
ation of objective benchmarks against which folding 
prediction tools could be tested, and these contests 
also inspired rich competitions from tool builders 
(Kryshtafovych et al. 2023). CASP events also led 
to the standardized development and deployment of 
folding tools, paving the way for the development of 
hybrid combinations of approaches (e.g., machine 
learning and molecular dynamics). These approaches 
provided insights into generalized features of the 
protein structure problem that were instrumental in 
creating successful AI solutions (e.g., conserved folds 
and conserved links between sequence, structure, 
and function). Third, protein folding benefited from 
the massive amount of highly interrelated protein 
sequence data that provided an evolutionary context 
to the folding problem. Lastly, protein folding and sim-
ulation efforts have always been at the forefront of the 
application of ASCR’s HPC platforms to biology. Pro-
tein simulation efforts are one of the driving problems 
motivating the use of exascale platforms for biology. 

Molecular-Scale Techniques
MetaHipMer is another example of successful collab-
oration between computer scientists, biologists, and 
HPC. This computational tool efficiently assembles 
DNA sequences from complex microbial commu-
nities using a GPU-accelerated implementation to 
address challenges in metagenome assembly, including 
irregular memory access patterns and the need for 
dynamic data structures, by leveraging GPU optimiza-
tion techniques and memory management strategies 
(Awan et al. 2021). MetaHipMer2 shows significant 
overall performance improvement, as tested on DOE’s 

For definitions of "threading" and 
other discipline-specific terms found 
throughout the report, see Appendix C: 
Glossary, p. 53.



9

Chapter 1 | Background

U.S. Department of Energy Office of Science				                			             January 2026

DOE Powers Discovery: An AI Success Story
University of Washington biochemist and compu-
tational biologist Dr. David Baker, along with two 
colleagues, was awarded the 2024 Nobel Prize 
in Chemistry for his pioneering work in compu-
tational protein design using diffusion models, 
a breakthrough event that has accelerated the 
entire field of protein engineering and design 
of novel biomolecules not found in nature. The 
Nobel-winning research was performed using 

DOE’s high-performance computing resources at 
the National Energy Research Scientific Comput-
ing Center. This landmark achievement exempli-
fies how AI-driven approaches, enabled by DOE 
supercomputing, have advanced computational 
protein design and protein structure prediction, 
leading to innovative applications in biotechnol-
ogy, biomanufacturing, energy, agriculture, and 
medicine.

Diffusion models can generate new protein backbones, geometries, and sequences that were not 
included in the datasets used for training such models. [Reprinted under a Creative Commons Attribution 
4.0 International License (CC BY 4.0) from Watson, J. L., et al. 2023. "De novo Design of Protein Structure 
and Function with RFdiffusion," Nature 620, 1089–100. DOI:10.1038/s41586-023-06415-8.] 

Summit supercomputer. This work highlights signif-
icant progress toward adapting metagenomic work-
flows to GPU-dominated exascale computing systems. 

AI has also had a profound impact on instrumentation 
in biology (e.g., in mass spectrometry). Mass spec-
trometry metabolomics provides direct biochemical 
measures of biological processes and is often used to 
provide a functional complement to DNA sequencing. 
AI methods are already proving powerful in extracting 
additional information from these high-dimensional 
datasets to improve the currently small fraction of 
metabolites that can be identified in a metabolomics 
experiment. One recent example of this is BUDDY, a 

software tool that is able to accurately determine molec-
ular formulas for metabolites through bottom-up inter-
rogation of mass spectrometry data (Xing et al. 2023).

Other DOE Efforts
The collaboration between DOE and the National 
Cancer Institute (NCI) to advance precision oncology 
and scientific computing is another success story for 
AI-enabled biology. This effort resulted in the devel-
opment of new scalable deep learning algorithms 
operating on DOE exascale platforms, which catalyzed 
computational drug discovery for cancer therapeutics 
(e.g., Lawrence Livermore National Laboratory–
BridgeBio partnership). Collaborators also released 

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
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datasets and new AI models that are now heavily used 
by the cancer research community. 

DOE’s contributions to the BRAIN Initiative (Brain 
Research through Advancing Innovative Neurotech-
nologies) have accelerated the pace of innovation in 
neuroscience, data integration, and cross-disciplinary 
collaboration. The BRAIN Initiative, which is a public–
private partnership, supports the development of novel 
neurotechnologies and tools for monitoring brain 
function, including dynamic imaging. 

During the COVID-19 pandemic, DOE established 
the National Virtual Biotechnology Laboratory 

(NVBL), a consortium leveraging AI and computa-
tional models. NVBL significantly contributed to the 
pandemic response by developing exascale-aware tools 
such as epidemiological models, simulations, and new 
testing protocols (Clyde et al. 2021; U.S. DOE 2022b). 
AI has also been instrumental in accelerating drug 
discovery processes, which enable rapid discovery and 
optimization of new materials. These collaborations 
demonstrate the power of AI and cross-disciplinary 
efforts in driving scientific breakthroughs.
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Priority Research Directions
Chapter 2

The Envisioning Frontiers in AI and Computing for 
Biological Research workshop identified four priority 
research directions (PRDs) representing critical sci-
entific areas for applying and advancing AI in biolog-
ical research (see Table 2.1, this page). These PRDs, 
while presented as distinct thrusts, are inherently 
interconnected, and all share two significant themes: 
the need for (1) for data generation (see Ch. 3: Data 

Generation for AI, p. 25) and (2) crosscutting AI algo-
rithms, methods, and models (see Ch. 4: Crosscutting 
Approaches, p. 29). 

Workshop participants discussed the reasoning behind 
each PRD, detailed the impact it can have on biological 
research, defined the key science questions it could 
answer, and identified target activities (i.e., ideal strate-
gies for the execution of the PRD).

Table 2.1. Crosscutting Tasks and Challenges Associated with Proposed Priority Research Directions

Priority Research 
Direction

Example  
Biological Task

Corresponding Computer 
Science/Math Challenge

PRD 1 
Multimodal 
Data Assembly

Integrate imaging, omics, and text metadata 
to discover determinants of function and 
novel pathways

Exascale-scalable manifold alignment and 
optimal-transport fusion with uncertainty 
quantification

PRD 2  
Multiscale Biosystems 
Simulation 

Predict plant–soil–microbe interactions and 
phenotypes over time and space

Multigrid partial differential equation 
solvers, surrogate molecular dynamics and 
ordinary differential equation models, and 
adaptive mesh refinement

PRD 3 
AI-Enabled Drivers for 
Experimental Systems

Design enzymes, pathways, and microbi-
omes de novo to manipulate expressed 
phenotypes

Novel, scalable optimization strategies and 
algorithms and reinforcement learning 
controllers

PRD 4 
Novel Algorithms 
for Genomics 

Detect regulatory motifs and community 
network modules

Beyond attention-based transformers; 
graph neural networks, transfer learning, 
and uncertainty quantification
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2.1 Multimodal Data Assembly
    �PRD 1: Advance novel computational 

approaches for data fusion to assemble 
multimodal data from disparate sources and 
link biological processes from molecules to 
the functional traits of organisms.

Rationale (Challenges and Opportunities)
Biological data are typically sparse, noisy, uncertain, 
and often lack standardization. Further, knowledge 
of the molecular mechanisms and even fundamental 
principles governing the behavior of most systems is 
incomplete and often fragmented. Fundamental lim-
itations in measurement strategies make interrogating 
molecular entities within even model systems and 
diverse conditions challenging. To address and over-
come these challenges, exascale computing for reason-
ing models, data fusion, optimal experimental design 
strategies, and verification approaches are needed, 
along with new integrative experimental, computa-
tional, and theoretical strategies informed by advances 
in AI foundation models. These strategies will require 
broad advances in automated laboratories and digital 
twins that enable reasoning models with experimental 
feedback to accelerate the generation of multiscale bio-
logical datasets. 

Key Questions
•	 �What computational approaches can be developed 

to fuse complex biological data (e.g., imaging, 
omics, abiotic conditions, and natural language 
text) to enable the discovery of new biological 
behaviors, mechanisms, and design principles, 
while simultaneously addressing data interoper-
ability, noise, standardization, and  uncertainty 
quantification? 

•	 �How can these approaches best leverage emerg-
ing data integration infrastructures like the BER 
Data Lakehouse and the ASCR American Science 
Cloud, and how can this infrastructure best serve 
data fusion needs?

Impact
Multimodal data assembly approaches will improve 
the capacity to integrate and synthesize extensive col-
lections of existing biological data and to use existing 
data to rapidly contextualize new data as it is gener-
ated. This will improve both experimental design and 
the quality and value of data generated, enhancing que-
ries across resources and the effectiveness of all ongo-
ing biological research programs. These capabilities 
can support a wide range of DOE-relevant challenges 
in biotechnology innovation, bioenergy, biomaterials, 
and phytomining, including:

•	 �Integrating omics and geochemical data to under-
stand microbial community responses to abiotic 
stressors across diverse soil and plant systems

•	 �Modeling drought-induced shifts in root exudate 
chemistry

•	 Understanding rhizosphere microbiome dynamics  

•	 �Developing advanced biodesign concepts to engi-
neer molecules, microbes, plants, and microbial 
communities to extract and recover critical miner-
als and materials (CMM) with enhanced selectivity 
from natural and complex environments

Target Activities
Improve Experimental Strategies and Data Stan-
dardization. Many areas of DOE interest lack datasets 
of sufficient size to support deep AI analysis, par-
ticularly for critical conditional data on cellular and 
molecular dynamics, physiology, fitness, and activity 
in diverse relevant conditions. Implementing strategic 
experimental design and replicable data acquisition 
roadmaps is essential for producing high-quality, stan-
dardized datasets that comply with FAIR principles 
(Findable, Accessible, Interoperable, and Reusable; 
Wilkinson et al. 2016, 2019). These datasets are 
needed to create robust multimodal biological models 
(see Ch. 3: Data Generation for AI, p. 25). Impor-
tantly, this strategy should leverage DOE’s existing 
strengths in data generation, such as extensive genomic 
sequence libraries and macromolecular structure 
datasets (Berman et al. 2000; Arkin et al. 2018) while 
addressing critical gaps in contextual information 
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(e.g., conditional data on cellular physiology and 
dynamics under diverse conditions, along with more 
complete metadata). 

AI approaches can partially compensate for sparse or 
lower-quality data, but their greater promise lies in 
guiding data acquisition itself. For example, within an 
active learning framework (Lookman et al. 2019), AI 
models could identify high-value knowledge gaps and 
suggest targeted new experiments or measurements 
(e.g., adding specific controls, internal standards, or 
undersampled conditions) that would most improve 
predictive accuracy or reduce model uncertainty. By 
tightly integrating exascale computing for AI guidance 
with improved data standards, a feedback loop can be 
established in which better data leads to better models, 
and those models in turn inform more strategic exper-
iments to advance progress toward a more predictive, 
cross-scale understanding of complex biological sys-
tems in line with DOE’s mission.

Develop Scalable Methods To Manage Data Uncer-
tainty and Sparsity. Advancing robust uncertainty 
quantification requires developing theoretically 
grounded and scalable methods specifically engi-
neered to handle the sparsity and high dimension-
ality inherent in biological datasets. These methods 
should be capable of generating statistically rigorous 
confidence intervals that accurately reflect prediction 
reliability across complex molecular interactions. To 
ensure data integrity prior to downstream analysis, it 
is vital to establish automated data quality assessment 
architectures that implement sophisticated statistical 
approaches to detect, characterize, and remediate 
experimental artifacts and systematic biases inherent 
in multiomics datasets.

Innovations are needed in ensemble methodologies 
that integrate predictions from diverse modeling par-
adigms [e.g., physics-based simulations (Abramson 
et al. 2024), deep learning architectures (Ballard et 
al. 2024), multiplex network learning (Sullivan et al. 
2024), and knowledge-driven approaches (Li et al. 
2024)]. Ensemble methodologies should incorporate 
principled uncertainty propagation to enhance the 
robustness and reliability of gene function predictions. 
Furthermore, developing advanced transfer learning 

frameworks is essential to quantitatively characterize 
domain shifts when transposing models across phy-
logenetically diverse species or variable conditions, 
enabling precise evaluation of model generalizabil-
ity boundaries and facilitating targeted refinement 
through domain adaptation techniques that preserve 
biological relevance. These methodological advances 
collectively establish a mathematical foundation for 
confidence-aware biological discovery systems that 
rigorously account for uncertainty throughout the ana-
lytical pipeline. If such approaches were implemented 
in computational platforms like the DOE Systems 
Biology Knowledgebase (KBase) or the National 
Microbiome Data Collaborative (NMDC), these 
services could provide researchers with a detailed 
understanding of how gene annotations, microbial 
traits, or insights from samples propagate among sim-
ilar entities, or quantify confidence in these types of 
inferences.

Improve Capacity To Investigate Sources of Data 
Variability and Noise Amid Data Scarcity. One of 
the great challenges associated with integrating biolog-
ical data from disparate sources is understanding the 
causes of variation across datasets. Replicates within 
a single laboratory are often extremely similar, while 
replicates across laboratories display greater variability; 
therefore, understanding and reducing interexperi-
mental and interlaboratory variability is critical to data 
assembly (Novak et al. 2025). AI methods employ-
ing statistical anomaly detection, domain-adaptive 
learning, and Bayesian uncertainty quantification can 
mitigate this variability by systematically identifying 
which types of biological data are most susceptible to 
discrepancies caused by different laboratory protocols. 
Given the inherent scarcity, variability, and noise in 
biological data, robust computational methods (e.g., 
tensor-based imputation, sparse representation learn-
ing, graph-based denoising algorithms, and probabi-
listic generative modeling) are needed for training and 
inference from incomplete data.

Integrate Multimodal Data To Handle Incomplete 
Data. Leveraging existing multidisciplinary data, 
including epigenetic, multiomic, abiotic conditions, 
and phenotypic data, is required to develop models 
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that improve the understanding and prediction of 
functionality from molecules to systems. AI models 
have the potential to analyze large and complex mul-
timodal datasets (Ushizima et al. 2021), like those for 
multiomics (Yetgin 2025); identify patterns; and make 
predictions about the changing behavior of dynamic 
hierarchical systems. Moreover, this approach opens 
new opportunities for model-informed experimen-
tal design, in which data used for multiscale analysis 
(Yoon et al. 2024) both guides and is guided by mod-
els, enabling rapid iterative learning. Computational 
tools and models capable of effectively integrating 
sparse, heterogeneous, and high-dimensional data are 

Fig. 2.1. Complexity of Plant–Microbe and Microbe–Microbe Interactions in Rhizosphere Systems. (A) An example of 
a mechanistic digital twin for rhizosphere systems is a community metabolic (M) or metabolic-enzyme (ME) model. These 
models can capture, represent, and mechanistically explain dynamics in molecules, enzymes, and species over time, enabling 
them to guide the manipulation of experimental and engineered biological systems to meet desired objectives. (B) Mechanis-
tic models of metabolism only (M-models) have three advantages: they are smaller, have fewer parameters, and are less com-
putationally intensive to run. However, these models lack the capacity to fully capture dynamics outside of metabolism (e.g., 
gene expression, regulation, and shifts in macromolecular processes). Expanding M-models to include these systems creates 
ME-models, which are far more capable of representing biology comprehensively. However, ME-models are also larger, more 
parameter-intensive, and more computationally costly to run. Proper model selection is crucial for optimizing digital twinning. 
[Courtesy University of California–San Diego]

A B M-model
• 400 to 1,000 reactions

• <1 second to simulate

• Limited to metabolism

ME-model
• 2,000 to 10,000 reactions

• 5 to 20 minutes to simulate

• �Metabolism, transcrip-
tion, translation, translo-
cation, post-translational 
modification

• �Proteome allocation and 
cofactor utilization

0 1 0 0
0 0 1 0
1 0 0 2

critical for making accurate predictions despite incom-
plete information.

Use Deep Learning Architectures for Multimodal 
Representation and Integration. Developing 
new computational approaches and deep learning 
architectures that can simultaneously handle hetero-
geneous data types (e.g., genomic, transcriptomic, 
metabolomic, proteomic, imaging, and metadata), 
particularly with sparse or incomplete multimodal data 
(Argelaguet et al. 2020), is essential for an integrative 
understanding of biological data. This task includes 
creating models that learn unified embeddings 



15

Chapter 2 | Priority Research Directions

U.S. Department of Energy Office of Science				                			             January 2026

(Gayoso et al. 2021), provide latent space interpre-
tation to map into actionable decisions (Avsec et al. 
2021), and develop techniques that are interoperable 
across modalities.

Integrate Multiomic and Environmental Data 
Using Physically or Biologically Informed 
Machine Learning Models. Advanced research 
is required to develop comprehensive digital twin 
platforms that combine multiomics datasets with 
environmental variables through physically or bio-
logically informed machine learning (ML) or mech-
anistic models (Karniadakis et al. 2021), enabling 
predictive simulation of complex plant–microbe and 
microbe–microbe interactions across spatiotemporal 
scales (Corral-Acero et al. 2020; see Fig. 2.1, p. 14). 
For example, a digital twin of switchgrass roots under 
nutrient limitation could integrate real-time soil data, 
transcriptomic feedback, and data-informed microbi-
ome interactions to optimize carbon allocation strat-
egies and inform root trait engineering (Sasse et al. 
2018). 

Creating advanced self-supervised learning methodolo-
gies that effectively leverage vast repositories of unlabeled 
genomic data is necessary to establish fundamental rep-
resentations (Ji et al. 2021) that substantially improve 
downstream prediction tasks while reducing dependence 
on limited labeled datasets. Curated datasets, bench-
marks, and data pairings are needed to support contras-
tive learning and fuel these approaches (Frazer et al. 2021; 
Peng et al. 2025). 

Significant innovation is required to implement 
meta-learning frameworks capable of rapidly devel-
oping and adapting foundation models to novel 
organisms with minimal labeled data through strategic 
knowledge transfer across phylogenetic boundaries 
(Theodoris et al. 2023). Furthermore, agent-based 
modeling approaches that establish quantitative 
bridges between molecular-level mechanisms and 
emergent community-level dynamics in microbial 
ecosystems will be essential for connecting genomic 
information to observable environmental phenomena 
through principled computational abstractions.

2.2 Multiscale Biosystems 
Simulation
�   �PRD 2: Develop mechanistically grounded, 

mathematically rigorous predictive models 
that represent biological processes across a 
range of scales, from controlled laboratory 
settings to complex natural environments and 
from molecular- to field-level dynamics.

Rationale (Challenges and Opportunities) 

A core challenge in building mathematically consis-
tent models that capture complex biological processes 
and systems is the inherently high dimensionality of 
those systems, including sparse, incomplete, and noisy 
experimental observations. Connecting genome-based 
molecular models with ecosystem-scale simulations 
remains computationally challenging due to the vast 
spatial and temporal scales involved, from nanometers 
to meters and seconds to years. AI-driven approaches 
such as multiresolution modeling, hierarchical neural 
networks, and causal inference algorithms could link 
these scales effectively (see Fig. 2.2, p. 16). Achieving 
this integration requires overcoming computational 
bottlenecks associated with high-dimensional simula-
tions and memory-intensive calculations, demanding 
significant advancements in algorithms designed for 
high-performance computing (HPC) systems. Algo-
rithmic innovations (e.g., adaptive mesh refinement 
and causal learning) coupled to scale-spanning exper-
imental approaches could be integrated into novel 
predictive models of biological processes to enable 
more scalable computational simulations optimized 
for exascale platforms.

Key Questions
•	 �What new mathematical and computational 

approaches are required to bridge genome-based 
molecular models with ecosystem-scale experimen-
tal studies, ensuring consistency across biological 
scales while using sparse multimodal data? 

•	 �How can AI-driven multiscale modeling be 
integrated with laboratory and field ecosystems 
through digital twins to enhance the accuracy, 
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interpretability, and generalizability of biological 
simulations?

Impact
Improved multiscale biological simulations will trans-
form the ability to understand and control biological 
processes across scales, from genome-level molecular 
interactions to large-scale systems, enabling precise 
simulations and targeted interventions in bioengineer
ing and ecosystems. By integrating AI-driven multi
scale modeling and digital twins, researchers can 
enhance predictive accuracy to optimize both labora-
tory and field experiments.

Target Activities
Integrate Cross-Scale Modeling of Biological Sys-
tems. AI methods such as multiplex network learn-
ing algorithms, multiresolution transformers, and 

reinforcement learning agents can integrate data across 
scales (Silver et al. 2021), from molecular interactions 
to phenotypic traits to field-level measurements (Alber 
et al. 2019). These models enable the discovery of 
how specific regulatory or metabolic pathways shape 
whole-organism performance or influence broader 
processes like soil nutrient flux, nitrogen fixation, 
and microbial competition. Mechanisms identified in 
model organisms, for example, can be traced across 
species and contextualized within community-scale 
simulations to assess how pathway rewiring affects sys-
tem stability or output. Concrete applications include 
(1) predicting drought-induced carbon allocation 
in switchgrass roots, (2) modeling the influence of 
microbiome composition on bioenergy, biomateri-
als, or phytomining productivity, and (3) predicting 
how community-level metabolic networks in micro-
bial consortia affect element cycling in soils. These 

Fig. 2.2. Diverse Approaches to Predictive Phenomics. Biological data used to understand systems biology traverse scales 
of time, space, and complexity, ranging from milliseconds to millennia, from microns to miles, and from the molecular, cellu-
lar, and organismal levels to the ecosystem scale. Integrating this wealth of multimodal information requires data fusion and 
rigorous model interpretation. Multimodal representation learning methods and AI-driven biological data integration analysis 
through model pretraining, deep learning methods, and knowledge integration have the capacity to aggregate complex multi-
modal data across scales to discover new relationships currently hidden within existing complex biological datasets. 
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integrated models serve as the foundation for biologi-
cally grounded digital twins (Corral-Acero et al. 2020), 
guiding hypothesis generation, trait engineering, and 
targeted experimentation across DOE-relevant systems.

Innovate and Implement AI-Driven Experimental 
Design. New approaches that effectively quantify tar-
get molecules, pathways, and processes across scales of 
biological organization will enable new insights about 
the multiscale nature of systems biology. Predicting 
phenotypes and metaphenomes requires a focus on 
biomolecules, environmental factors, and emergent 
outcomes. The dynamic nature of systems biology 
calls for adaptive and iterative experimental platforms 
(Shahriari et al. 2016) that quantify systems at mul-
tiple temporal and spatial scales. Generative AI can 
accelerate model development (Sanchez-Lengeling 
and Aspuru-Guzik 2018) to fill gaps in sparse data and 
ensure imputed data are consistent with known bio-
logical constraints. Exascale computing can facilitate 
analysis of high-dimensional data and update models 
in response to rapidly generated experimental data. The 
interactive nature of AI–model–experiment research 
includes validating models with ground-truth data and 
experimental perturbations (Huang et al. 2016) to test 
the accuracy of predicted phenotypes (i.e., observable 
traits) within dynamic biological contexts.

Develop Novel Mathematical Models To Better 
Reflect the Distinctive Complexity of Biological 
Systems. Collaborative computational and biological 
research creates remarkable opportunities to analyze 
and interpret the high-dimensional data involved in 
discovering the molecular levers that drive ecosystem 
functions and responses to stresses and other perturba-
tions (Brunton and Kutz 2022; Hoffmann, M. A., et al. 
2022). Interpreting the function of unannotated genes, 
metabolites, and proteins under a range of abiotic con-
ditions requires novel approaches that capture both 
instantaneous and long-term impacts (Riesselman 
et al. 2018). Computational methods that resolve com-
binatorial complexity and adapt to changing contexts 
will transform understanding of biological systems. 

The reciprocal nature of organismal influence on and 
by the environment poses important challenges for 
mathematical representations and uncertainty quan-
tification (Smith 2013). For example, plant–microbe 

interactions, soil conditions, and environmental 
factors all contribute to complex, nonlinear system 
behavior. However, biological systems science lacks 
clearly defined equations like physics-based models, 
increasing uncertainty (Karpatne et al. 2017). Bio-
logical systems often operate in a physical regime 
that cannot be perfectly described by continuous 
mathematical frameworks (e.g., essential molecules 
with less than one copy number per cell), requiring 
improved scalable algorithms that accommodate the 
stochasticity inherent in these systems (Raj and van 
Oudenaarden 2008). New algorithmic approaches and 
diverse computational platforms will be needed for 
efficient parallel processing and data handling and to 
enable AI models to adapt based on multimodal data 
(Avsec et al. 2021).

2.3 AI-Enabled Drivers 
for Experimental Systems 
   �PRD 3: Establish AI-enabled drivers for exper-

imental systems as tools to understand and 
explore de novo design of biomolecules, 
metabolic pathways, and metabolic networks 
to extend the limits of nature's biochemical 
repertoire.

Rationale (Challenges and Opportunities)
Biological systems have a vast capacity to produce, 
manipulate, and efficiently separate numerous useful 
molecules using engineered proteins, pathways, and 
(multi)cellular processes. These biosystems range from 
the complex ecosystems needed to produce bioenergy 
feedstocks to the engineered strains used to convert 
them into a wide array of valuable bioproducts. How-
ever, the development of novel biodesign solutions is 
slowed by knowledge gaps in understanding complex 
biological functions and their interactions across 
spatiotemporal scales and environmental contexts, 
compounded by the massive protein, pathway, and 
bioprocess design space. 

Interdisciplinary teams and cutting-edge facilities are 
needed to effectively use AI to predictably harness 
nature’s biochemical repertoire. In de novo design, 
exascale computing will transform high-throughput  
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virtual screening of the massive chemical and biolog-
ical space. AI algorithms can optimize experimental 
designs by controlling autonomous experiments, 
identifying critical knowledge gaps, and providing 
causal inferences from heterogeneous and high-dimen-
sional biological data sources across both scale and 
complexity. Implementing this approach will require 
close partnerships among computational scientists, 
experts in applied math and computation, biologists, 
and ecologists (among others), along with access to 
HPC and cutting-edge biological and environmental 
research facilities.

Key Questions
•	 �How can AI-driven digital twins enhance the 

design and optimization of biosystems, ensuring 
accurate uncertainty quantification and robust 
performance? 

•	 �How can autonomous experimentation, powered 
by advanced AI algorithms, improve the design and 
optimization of biosystems and enable more effi-
cient and effective discovery processes?

Impact
Integrating AI-driven digital twins and autonomous 
experimentation into biosystems design will signifi-
cantly enhance the ability to model, predict, and 
optimize biological processes. This synergistic com-
bination of approaches will improve the speed and 
efficacy with which new biological insights are gleaned 
from experimental outputs while streamlining efforts 
to design new experiments to validate discoveries. 
Essentially, this work will improve the throughput and 
efficiency of the scientific Design-Build-Test-Learn 
(DBTL) cycle (see Fig. 2.3, this page). Standardized 
and automated workflows will greatly improve the util-
ity of derived data.

Target Activities
Use AI To Achieve Both Experimental Tractability 
and Relevance. Digital twins have tremendous poten-
tial to serve as an integrative framework balancing 
trade-offs in tractability and relevance in biosystems 
design. This balance is critical because scale-up is one 
of the fundamental challenges in biology, whether 

Fig. 2.3. Design-Build-Test-Learn (DBTL) Framework. AI is placed at the core of this DBTL cycle as an intelligent driver. AI 
models can propose hypotheses and guide experimental design for maximum information gain. Systems are built to chal-
lenge these hypotheses. Test strategies are AI-driven and adaptive, efficiently targeting measurement gaps. All resulting data 
is assimilated into a data backbone (e.g., BER Data Lakehouse or American Science Cloud), an uncertainty-aware knowledge-
base that enables continuous model updates and systematic learning for the next iteration.
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going from a test tube to a fermenter or from a labora-
tory microbiome to the field. 

Fermenter and field conditions are the end goal, but 
they are expensive, slow, complex, and often have 
many latent variables. Laboratory systems are typically 
inexpensive, fast, simple, and sufficiently controlled for 
mechanistic studies. Developing and integrating digital 
and physical twins spanning scales and complexity will 
create a powerful new capability to accelerate trans-
lation and generalization. For example, the develop-
ment and use of fabricated ecosystems (e.g., EcoFABs, 
EcoPODs, and Soil Chips) will play a key role in the 
development, refinement, and control of digital twin 

experiments (Zengler et al. 2019). Given the common-
ality of underlying causal mechanisms such as gene 
regulation and metabolism (Karniadakis et al. 2021), 
mathematical and computational methods offer trans-
ferable utility across diverse biological systems. For 
instance, Bayesian neural networks excel at providing 
robust uncertainty quantification and interpretation, 
while graph neural networks can effectively identify 
complex relationships like correlations between metab-
olites and microbial interactions (Kwon et al. 2020). 

Rapidly Enable Autonomous Experimentation 
Using AI. The incredible potential for AI design tools 
to be integrated with autonomous laboratories is a 

Fig. 2.4. Experiment Design with AI. AI provides unprecedented opportunities to integrate (1) automated workflows, 
(2) reduced-complexity models on the edge, and (3) real-time data from field sensors to develop (4) micron- to meter-scale  
digital twins of soil ecosystems that incorporate (5) novel algorithms and exascale computing.
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unifying theme across diverse biological applications. 
This integration can vastly accelerate navigation of the 
biodesign experimental space using iterative DBTL 
cycles (Carbonell et al. 2018; see Fig. 2.3, p. 18, and 
Fig. 2.4, this page). AI-driven experimental design, 
monitoring, and control can enable much more effi-
cient experimental designs, including adaptive experi-
mentation (Burger et al. 2020).

Biologists typically perform a series of replicate 
treatment-control studies, where each study motivates 
the next. Autonomous experiments can use models 
(e.g., digital twins) and unreplicated data to initially 
explore experimental space and then rapidly converge 
on the areas with the largest uncertainty or the greatest 
potential for advancement [e.g., delving more deeply 
into mutations that display significant changes in 
phenotype (Stokes et al. 2020)]. These approaches 
can greatly improve experimental reproducibility, rep-
licability, and productivity through standardization, 
optimization, and clear definition of all experimental 
parameters (NASEM 2019).

Apply Reasoning Models and Digital Twins To 
Hypothesize New Biological Constructs. Reasoning 
models offer a means of rapidly synthesizing existing 
biological knowledge to propose new potential capa-
bilities of biological systems (e.g., novel enzymatic 
activities, novel pathways, novel microbial interac-
tions, and new biology-based materials; Zhang et al. 
2025). Reasoning models can generate hypotheses 
much faster than human scientists can experimen-
tally test or even evaluate the hypotheses. Verification 
approaches are needed to support the effort to ground-
truth hypotheses proposed by foundation models. 
For example, digital twins may be used to rapidly test 
hypotheses against current mechanistic or data-driven, 
evidence-based understanding of biological systems 
(Karpatne et al. 2017). This tactic could filter out unre-
alistic hypotheses and identify potential knowledge 
gaps exposed by a new proposed hypothesis, leading to 
the rapid design of more fruitful experiments.

Emphasize Explainable AI Capabilities To Advance 
Scientific Understanding. AI models in biology oper-
ate along a continuum that spans predictive, causal, 
and mechanistic reasoning (Sundararajan et al. 2017). 

Clarifying where a model falls on this spectrum is 
essential for ensuring that AI tools are aligned with 
DOE’s mission to understand and manipulate biologi-
cal processes for energy, biomaterials, and CMM. 

Predictive models are designed to identify statistical 
patterns in data and use patterns to forecast future out-
comes or classify biological states. These models, such 
as those used to predict protein structure, gene expres-
sion levels, or phenotypic traits from multiomic inputs, 
can achieve high accuracy but typically lack interpret-
ability; they do not explain why a prediction is correct. 

Causal models go beyond pattern recognition to infer 
directional relationships among variables, identifying 
which genes, pathways, or environmental factors influ-
ence others under specific conditions. In biological 
systems, causal inference can uncover the regulatory 
factors driving gene expression, the interactions shap-
ing microbial communities, or the triggers of pheno-
typic shifts. 

Mechanistic models, the most explanatory tier, aim 
to reconstruct the internal organization of biological 
systems. They identify modular structures—such as 
regulatory circuits, metabolic subnetworks, or signal-
ing cascades—that collectively produce a functional 
outcome (Orth et al. 2010). Mechanistic models are 
closely aligned with experimental biology, as they offer 
interpretable, testable hypotheses about how biologi-
cal function emerges from system structure.

While noncausal, nonmechanistic predictive AI 
models can enable effective design of biological sys-
tems, applications and advances from these models 
will ultimately plateau, as this kind of extrapolation 
can only be extended so far (Frazer et al. 2021; Peng 
et al. 2025). For example, protein language models 
(PLMs), purely predictive AI algorithms, are excep-
tionally good at predicting the types of mutations 
and variations that arise from natural evolution 
because that is the dominant variation found in pro-
tein sequence databases (see Fig. 2.5, p. 21). Without 
fine-tuning, PLMs fail to predict mutations that occur 
in adaptive laboratory evolution experiments because 
these mutations are a product of evolution in artificial, 
laboratory-created conditions. 
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While PLMs are certainly excellent tools for protein 
design, their predictive nature limits the protein design 
space they can effectively explore. This limitation 
highlights the importance of developing explainable 
AI methods in close collaboration with scientists and 
laboratory facilities, thus taking advantage of both AI 
and human capabilities. Integrating digital twins and 
human-in-the-loop systems with experimental data 
sources is particularly powerful in this context because 
comparison and control of the two provide a robust 
framework to direct experiments toward key knowl-
edge gaps.

2.4 Novel Algorithms 
for Genomics
   �PRD 4: Develop algorithms to detect patterns 

in gene and genome organization within and 
across species to predict phenotypic plasticity.

Rationale (Challenges and Opportunities)
Deciphering the intricate relationships between 
genes, genomes, epigenomes, transcripts, proteins, 
metabolites, and phenotypes in diverse species is an 
algorithmic challenge complicated by massive and 

Fig. 2.5. Pipeline for the ProteinDT Pretraining Framework. Pretraining steps (A–C) and downstream tasks (D–F). 
(A) ProteinCLAP, a contrastive learning paradigm, aligns the representation spaces of the text and protein sequence modal-
ities. (B) The ProteinFacilitator model augments the mapping from text sequence representation to protein sequence 
representation. (C) A protein sequence decoder generates protein sequences conditioned on the representations produced 
in the previous steps. (D) Downstream text-to-protein generation task. (E) Downstream text-guided protein editing task. 
(F) Downstream protein property prediction task. [Image republished from Liu, S., et al. 2025. “A Text-Guided Protein Design 
Framework,” Nature Machine Intelligence 7, 580–91. DOI:10.1038/s42256-025-01011-z.]
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complex datasets across communities and scales. Exas-
cale computing can provide the necessary resources to 
train models with vast amounts of data and to optimize 
complex networks, leading to more efficient pathways 
and promising outcomes. Novel AI approaches inte-
grating HPC with experiments are an opportunity 
to overcome the high dimensionality and sparsity of 
omics data. 

Key Question 
•	 �How can novel AI approaches such as digital twins, 

foundation models, and other computational tools 
be integrated with omics research to discover, 
understand, and predict the molecular mechanisms 
in plants, microbes, and microbial communities 
that govern macroscale processes?

Impact 
Advances in this space will greatly accelerate the 
development and integration of novel AI capabilities 
in omics research, enabling a deeper understanding 
of how genes, epigenetic marks, transcripts, proteins, 
and metabolites within plants, microbes, and microbial 
communities govern key emergent processes. Specif-
ically, novel algorithms will transform understanding 
and control of the complex networks of interactions 
among the molecular entities that make up biological 
systems to operate together to produce cellular, micro-
biome, and even ecosystem-level behaviors.

Target Activities
Advance Biological Algorithms. Research is needed 
to advance network-theoretic frameworks that syn-
ergistically integrate multiplex networks and knowl-
edge graphs with foundation models to understand 
multiscale biological interactions from molecular 
mechanisms to ecosystem dynamics. Unified network 
representations capable of harmonizing heterogeneous 
omics datasets—genomic, epigenomic, transcrip-
tomic, proteomic, metabolomic, and microbiomic—
can reveal emergent patterns otherwise obscured by 
data fragmentation (Wang, T., et al. 2021). The robust 
computational methodologies underpinning this abil-
ity need to be developed. These methods necessitate 
the implementation of specialized multiplex network 

learning architectures tailored for biological applica-
tions. Such architectures can simultaneously process 
and learn from both structured biological relationship 
data  (e.g., protein–protein interaction networks, 
metabolic pathways, and microbial community inter-
actions) and unstructured information sources [e.g., 
scientific literature, experimental narratives, and multi-
plex networks derived from large-scale omics datasets 
(Szklarczyk et al. 2025)]. 

Furthermore, innovative edge algorithms must be 
developed specifically for complex plant and microbial 
community networks, incorporating domain-specific 
biological constraints and leveraging transfer learning 
to overcome data sparsity while accurately predicting 
novel molecular interactions that govern community 
behavior and function (Lotfollahi et al. 2023). These 
computational advances will collectively transform 
the ability to model, predict, and ultimately manip-
ulate biological systems across unprecedented scales 
of organization, from isolates (nanometers) to com-
munities (micrometers) to full microbiomes (centi-
meters to meters), and across systems (kilometers). 
This work will lead to improved and more generalized 
network-based tools that are applicable to diverse data 
at multiple scales. Such tools will be more accessible 
and readily applicable to biologists, permitting analysis 
of many data combinations that currently lack good 
analytical approaches.

Develop New Models To Understand Evolution 
of Sequence Features. New models are needed to 
describe how molecular function changes with evo-
lutionary, model-informed sequence and structure 
features (Brandes et al. 2013). Understanding molec-
ular function in the context of proximal interacting 
functions with other evolving or coevolving molecules 
is critical for contextualizing this interaction within the 
physical and regulatory milieu of the cell (Green et al. 
2021). Membrane and cell wall structure, improved 
estimation of transport (Almagro Armenteros et al. 
2019), and the evolution of regulation and resource 
balancing across cellular systems need to be inferred 
so that knowledge from one organism in a given envi-
ronment can be transferred to another in a different 
environment (Dalla-Torre et al. 2025). 
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Research needs include organized data of these types, 
evolutionary and physical models for function and 
interaction, and systems that can interpolate the trans-
formation between better-studied molecules or organ-
isms and less-studied ones.

Innovate Interpretable Biological Models. Signifi-
cant methodological advances are needed to develop 
advanced attention-based mechanisms (Vaswani et al. 
2017) for genomic sequence models that precisely 
identify and elucidate biologically significant motifs 
and regulatory elements, enabling transparent inter-
pretation of deep learning predictions in molecular 
biology. Engineering advanced visualization frame-
works that systematically map complex model decision 
boundaries and feature importance metrics to specific 
biological entities is crucial for establishing interpre-
table connections between computational predictions 
and underlying biological mechanisms. 

Innovation is required in counterfactual explanation 
methodologies specifically tailored to biological sys-
tems. Such methodologies could simulate perturbation 
effects with statistical rigor (e.g., quantifying predicted 
expression changes following regulatory element 
modification; La Fleur et al. 2024), thus enabling 
hypothesis generation for experimental validation. 
These capabilities, if applied to data in BER facilities 
like the Environmental Molecular Sciences Laboratory 
(EMSL) and DOE Joint Genome Institute ( JGI) or 
data repositories like KBase, NMDC, and the BER 
Data Lakehouse, could translate into powerful new 
hypothesis-driven experimental design frameworks, 
enhancing experiment productivity and improving the 
capacity to draw insights from complex data.

Engineer High-Throughput Hardware and Soft-
ware. Developing large-scale computing frameworks 
optimized for the unique computational character-
istics of biological multiplex network algorithms 
requires leveraging exascale computing architectures 
to process unprecedented volumes of interconnected 
biological data (Mammoliti et al. 2021; Acosta 
et al. 2022). Transformative research is necessary to 
develop containerized, reproducible AI workflow 
ecosystems—specifically designed for multiomics 
data processing—that seamlessly scale from personal 

computing environments to leadership-class super-
computing facilities while maintaining reproducibil-
ity across computational platforms. Advances are 
needed in memory-efficient algorithmic approaches 
for processing and analyzing omics-scale datasets 
(e.g., files encoding raw DNA reads from deep metag-
enome sequencing are around 300 to 600 gigabytes). 
Additionally, specialized hardware accelerators and 
optimization techniques must be designed for com-
putationally intensive bioinformatics operations (e.g., 
sequence alignment, structural prediction, and phylo-
genetic inference), dramatically improving throughput 
while reducing energy consumption for large-scale 
biological data analysis. All these advances would be 
immediately applicable to improving the cyberinfra-
structure of BER facilities and resources (e.g., JGI, 
EMSL, NMDC, KBase, and the Protein Data Bank). 
These advances would also be valuable for ongoing 
development in ASCR’s Integrated Research Infra-
structure and High Performance Data Facility projects, 
which will ultimately provide support for all BER facil-
ities and research.

Use Agent-Based Modeling To Aid Integration of 
Multiomic and Environmental Data. Agent-based 
modeling approaches must be designed to establish 
quantitative bridges between molecular-level mech-
anisms and emergent community-level dynamics 
in microbial systems, thereby connecting genomic 
information to observable environmental phenomena 
through principled computational abstractions. Such 
methods would reduce the substantial lag that pres-
ently exists between experimental data generation and 
rich mechanistic analysis, as without AI infrastructure, 
these activities are generally performed by multiple 
expert parties in collaboration. With AI agents, these 
collaborations would still be required, but modelers 
would be able to provide experimental collaborators 
with agentic interfaces that enable them to use nat-
ural language to drive models and ask models ques-
tions about their data (Thirunavukarasu et al. 2023; 
Borghoff et al. 2025).

Develop Experimental Designs for Model Val-
idation and AI-Driven Discovery. Collaborative 
teams need to conduct AI-informed laboratory and 
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field experiments that generate data for validating and 
calibrating predictive models. An iterative process 
involving the design and construction of experimental 
systems, followed by testing model predictions against 
empirical data, will refine both models and exper-
iments to ensure reproducible results and accurate 
predictions (NASEM 2019). Integrating biological 
insights with computational approaches will also help 
identify complex biological mechanisms and processes 
that can benefit from AI-driven analysis and model 
development (Karpatne et al. 2017). In addition, AI 
can be leveraged to explore and uncover emergent bio-
logical behaviors.

Leverage Reinforcement Learning Agents for 
Mechanistic Discovery. Reinforcement learning (RL) 
agents are emerging as powerful tools for mechanistic 
reasoning in biological systems, as recently shown with 
protein–ligand interactions (Lee et al. 2025). Unlike 
traditional predictive models that passively learn from 
labeled data, RL agents actively explore large, multiplex 
biological networks to uncover causal and functional 
relationships (Yang et al. 2023). These agents simulate 
how perturbations (e.g., gene edits or environmental 
shifts) affect system behavior, traversing complex 
omics and interaction networks to identify regulatory 

circuits, metabolic pathways, or condition-specific sub-
networks. Their ability to incorporate rewards based 
on biological plausibility, such as network coherence, 
literature alignment, or experimental validation, makes 
RL especially well-suited to guiding hypothesis gener-
ation, adaptive model refinement, and targeted experi-
mental design (Liu, H., et al. 2022). When embedded 
within digital twins or AI-guided laboratory platforms, 
RL agents can iteratively prioritize interventions, 
optimize trait engineering strategies, and accelerate 
the discovery of transferable biological mechanisms 
(Khdoudi et al. 2024).

These algorithmic innovations can also be applied to 
develop mechanistic models of numerous biological 
systems important to the DOE mission (e.g., bio-
mining in plants and microbiomes to accumulate and 
separate CMM; engineering more resilient bioenergy 
crops; and designing microbes to produce oils and 
other valuable byproducts or digest waste; Rylott and 
van der Ent 2025). By integrating root transcriptomics, 
metal transport pathways, and microbial-assisted metal 
solubilization, such models can guide the design of 
crops and consortia for CMM recovery, an emerging 
DOE priority (U.S. DOE 2023c).
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Data Generation for AI
Chapter 3

3.1 Rationale (Challenges 
and Opportunities)
AlphaFold would not have been possible without the 
coordinated efforts of a large community of protein 
crystallographers who generated the Protein Data 
Bank (PDB; see sidebar, DOE Powers Discovery, p. 9). 
The National Institutes of Health Protein Structure 
Initiative also contributed significantly to this database 
of high-quality structures, which made training the AI 
system possible.

Effective development of AI tools for cells and eco-
systems will similarly require vast amounts of new, 
standardized data that are of sufficient quality, reso-
lution, and content. Generating such data requires 
community standards and close partnerships between 
computational scientists and experimentalists. DOE’s 
national laboratory complex—with world-leading user 
facilities and deep domain expertise across application 
areas—is uniquely suited to provide high-quality, 
AI-ready data at the needed scale.  Exascale comput-
ing will facilitate the integration of multiscale models, 
allowing AI to learn relationships and predict emergent 
properties that are impossible to capture with smaller 
computational resources. To address BER missions 
in biology and achieve the identified priority research 
directions (PRDs), these efforts should focus on the 
largest knowledge gaps. This focused collaboration will 
motivate the development of breakthrough technolo-
gies for measuring key parameters.

3.2 Impact
The coordinated effort of the ASCR and BER research 
communities to rapidly generate standardized data will 
greatly facilitate all proposed PRDs. This coordination 
includes developing new modalities for making key 
measurements to illuminate currently “dark” biolog-
ical processes across scales. Critically, this effort also 
includes creating community standards, establishing 
new incentives, and enabling large multilaboratory 
experiments to generate data of sufficient quality 
and scale.

3.3 Target Activities
Large Coordinated Experiments To Generate Mul-
tiscale and Multimodal Data at Scale. Just as the 
physics community assembled around the quest to dis-
cover the Higgs boson (ATLAS Collaboration 2022), 
the ASCR and BER communities need to assemble 
around key organisms, ecosystems, and questions 
to rapidly generate necessary data across scales and 
modalities (Thompson et al. 2017). Having a central 
theme represents a new mode of experimentation 
where communities of scientists collaborate to fill data 
analysis gaps and support community models. This 
approach demands high-quality annotations, which 
must be accurate, consistent, and clearly defined. Tool-
ing for capturing user expertise plays a major role in 
validating inter-annotator agreement and in establish-
ing uncertainty scores (Dumitrache et al. 2020).

Drive Data Standardization with Recognition 
of Data Generators. New paradigms for individual 
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contributions are needed to incentivize the develop-
ment and acceptance of standardized experiments, 
data, and mathematical and computational tools (Data 
Citation Synthesis Group 2014; see Fig. 3.1, this 
page). This is especially true in the biological sciences, 
where scientists are evaluated based on the number, 
quality, and authorship position of their publications 
(Brand et al. 2015). Watermarking data and creating 
community leaderboards are innovative ways to track 
contributions that improve understanding and model 
accuracy (Choudhary et al. 2024; Gergov and Tsochev 
2025; Rafi et al. 2025).

Community Standards for Data Generation and 
Deposition. Unknown data reproducibility and rep-
licability are major challenges to using most existing 
biological and environmental studies for AI model 
training (Ball 2023). Few studies are replicated within 

the same laboratory; fewer still across multiple labo-
ratories. This is a critical gap that must be addressed 
through community organization of replicate studies 
to identify and understand how uncontrolled or latent 
variables (e.g., protocol details, instrument type, and 
season) impact outcomes. These variables must be 
specified and measured to obtain reproducible results. 

Replicate studies across multiple laboratories and loca-
tions will provide key insights into how sample size 
influences results, ultimately enabling AI-assisted study 
designs to generate high-confidence findings and useful 
data while facilitating improved use of automation (see 
Fig. 2.2, p. 16, and Fig. 3.2, p. 27). Addressing these chal-
lenges will require significant efforts in developing and 
disseminating standardized experimental protocols and 
resources, such as those being developed for fabricated 
ecosystems (Zengler et al. 2019; Novak et al. 2025). 

Fig. 3.1. Standardized Analyses. The diagram illustrates replicable experimental capabilities and community standards for 
data generation and deposition, which are required to enable integrative data analysis across time and laboratories.
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Community efforts are also necessary for interoperable 
and standardized format adoption. Data should be 
stored in formats that are open, widely supported, and 
easy to parse. Example formats include:

•	 �CSV, HDF5, and NETCDF for tabular and time 
series data

•	 PNG, TIFF, and OME-TIFF for images

•	 PDB, MMTF, mmCIF, and FASTQ for genomics

•	 JSON and YAML for metadata

Although not the focus of this workshop, considerations 
about domain ontologies for consistent terminology are 
important for team science and productivity.

AI Models To Focus Efforts on Biological 
Unknowns. Sequencing and multiomics have revealed 
the existence of a vast diversity of organisms, genes, 
and metabolites with unknown functions. For exam-
ple, only 5% of microbes have been characterized. 
Generally, fewer than 50% of the genes in a given 
microbe have known functions (often it is far less), 
and less than 10% of the metabolites in a given sample 
can be identified (Hoffmann, M. A., et al. 2022; Vanni 
et al. 2022). Closing the gap on unknown functions is 
a grand challenge in biology. 

AI tools can improve microbial isolation for subse-
quent characterization using high-throughput genetic 
and phenotyping activities (Liu, S., et al. 2022). 

Fig. 3.2. Laboratory Automation. The Anaerobic Microbial Phenotyping Platform (AMP2) is one of many synergistic exper-
imental user facilities supported by BER. AMP2 conducts anaerobic microbial phenotyping experiments by integrating com-
plex devices and tools, such as robotic arms, sample transport, laboratory automation, software, and analytical instruments, 
all inside connected anaerobic chambers. Such studies will provide novel information about biological functions that enhance 
understanding, predictions, and control of complex bioeconomy-relevant processes. [Courtesy Environmental Molecular 
Sciences Laboratory]
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Complementing these efforts with in situ community 
editing and perturbation experiments is critical for 
testing gene and metabolite function in uncultivated 
microbes (Nethery et al. 2022).

State-of-the-art AI-driven methods (built on reasoning 
foundation models that utilize knowledge graphs) can 
systematically integrate and analyze diverse biological 
data, allowing for the prediction and exploration of 
unknown metabolites, genes, and microbes. This 
approach reveals new functional insights and even 
enables the conceptualization of entirely novel biolog-
ical pathways or entities. Incorporating human-in-the-
loop approaches and advanced visualization (see Fig. 
3.3, this page) can further enhance the discovery pro-
cess, allowing domain experts to iteratively refine AI 
outputs, prioritize plausible hypotheses, and guide tar-
geted experimental validation. This human–AI synergy 
accelerates biological understanding and innovation, 
effectively transforming sparse insights into impactful 
discoveries (Prince et al. 2024). 

Technologies To Measure Key Variables and 
Responses. The small scale of microbial interactions 
relative to the ability to measure and monitor systems 

Fig. 3.3. Example of Virtual Reality Interaction. A photo
realistic 3D rendering of a homogeneous sorghum field. 
[Courtesy NSF Grant 2417510 Collaborative Research IIBRP 
VR-Bio-Talk VR Voice-Controlled Visual Analytics Platform 
for Plant Digital Twins; B. Benes, V. Popescu, A. Magana, 
D. Pauli, and N. Merchant]

(ideally noninvasively) leads to many knowledge gaps 
that impair efforts to apply AI to biological systems. 
Addressing this challenge requires the development 
and standardization of breakthrough technologies like 
quantum imaging to generate key data on micron-scale 
processes.

Benchmarking and Expert Review of AI-Driven 
Biological Models. As AI becomes increasingly cen-
tral to biological discovery, rigorous benchmarking and 
expert-guided evaluation are essential to ensure that 
models are not only technically sound but also biolog-
ically meaningful (Marbach et al. 2012). Traditional 
machine learning metrics, such as Area Under the 
Receiver Operating Characteristic curve (AUROC), 
Area Under the Precision-Recall curve (AUPR), top-k 
precision, and calibration error, remain important for 
evaluating predictive performance. However, biolog-
ical applications demand additional validation layers. 
Mechanistic models should be benchmarked against 
known pathways, gene–gene interactions, or regulatory 
circuits. Causal inference models should be compared 
to experimental perturbation data or inferred interven-
tion effects (Bansal et al. 2022; Szklarczyk et al. 2023). 
Conservation across species, alignment with curated 
ontologies (Gene Ontology Consortium 2021), and 
the recovery of literature-supported relationships offer 
additional structure-aware metrics. Agentic reasoning 
should be assessed through consistency across agent 
instances, factual grounding, and clarity of mechanistic 
explanations ( Jacovi and Goldberg 2020).

Critically, automated evaluation must be paired with 
human-in-the-loop expert review (Mosquiera-Rey 
et al. 2022). Domain experts play a central role in 
assessing the plausibility, novelty, and contextual rel-
evance of AI-generated hypotheses. To facilitate this, 
AI systems should output interpretable intermediate 
representations—ranked mechanistic gene sets, sub-
networks, or pathway narratives—accompanied by 
model confidence scores, provenance metadata, and 
natural language rationales. Integrating expert feed-
back into model refinement closes the loop between 
computational inference and experimental utility, 
aligning AI outputs with the goals of hypothesis gener-
ation, trait engineering, and biological insight.
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Crosscutting Approaches
Chapter 4

ASCR supports work in AI, applied mathematics, 
computer science, and exascale computing. This 
chapter explores how those efforts may be applied in a 
crosscutting manner to enhance the biological research 
performed within BER’s mission space (see Table 4.1, 
p. 30).

4.1 Novel Algorithms
Rationale (Challenges and Opportunities)
Biological processes interact with their environment 
to produce complex systems-level outcomes. Under-
standing and capturing these systems is a core DOE 
mission. Many ecosystem-scale processes are the result 
of interactions among multiple microbial community 
members, resulting in a community-level phenotype 
that is more than the sum of its parts (e.g., individual 
genes or genomes). For example, degrading complex 
organic feedstocks requires the cooperative hydrolytic 
capabilities of many individual microbial community 
members (Arnosti et al. 2021).

Most of these community members have only been 
measured in metagenomes, so they lack fully sequenced 
genomes or cultured representatives and have poor 
functional annotation. While AI applications in biol-
ogy have primarily focused on deep representations of 
genes, proteins, or genomes (Knutson et al. 2022), their 
applicability to systems- or community-level processes 
is largely unexplored. Areas of sparsity in new data 
representations, dimension reduction, and uncertainty 
quantification need further exploration (see Fig. 4.1, 
p. 31). Efforts to apply AI to community-level processes 

raise the question of whether existing AI algorithms 
could be adapted to these tasks or whether only novel 
approaches, particularly those relying on exascale sys-
tems, are amenable to handling exponentially complex 
biological phenomena. 

The limitations of current biological foundation 
models are another open question. These models are 
trained on data resources that are likely biased toward 
well-studied functions and organisms rather than 
representative systems. Creating generalizable models 
that capture true biological diversity will require novel 
mathematical and AI approaches to tackle data acqui-
sition, usage, analysis, and model evaluation, as well 
as the identification of data gaps whose resolution will 
best aid model generalization and deployment in open 
environmental settings.

Key Questions
•	 �What new mathematics, computer science, and 

computational sciences are needed to advance the 
analysis of complex genomic, microbial, and envi-
ronmental data? 

•	 �How can the simulation of biological processes be 
advanced from the cellular scale to the reactor, bio-
material, crop field, or even ecosystem scale?

•	 �Which algorithms must be developed to appropri-
ately quantify and understand uncertainty? 

•	 �How can the amount of data necessary for training 
AI be defined? 

•	 How should data be assessed?
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Table 4.1. BER Challenges and Corresponding ASCR Research and Development

Crosscutting 
Focus Area  Example Biological Question   Computer Science/Math Focus

Novel Algorithms 

How do individual microbe–metabolite 
interactions drive overall response and 
adaptation in complex microbiome 
systems?

• �Develop energy-constrained sparse-
learning algorithms inspired by bacterial 
networks (e.g., compressed sensing on 
graphs).

• �Create new reasoning models that reflect 
current biological reasoning approaches.

• �Develop mathematical approaches for 
modeling large language model efficiency.

Multiscale and 
Multimodal 
Modeling 

Can scientists design an energy crop that 
will be resilient to dynamic unfavorable 
growth conditions encountered in nature? 

• �Couple agent-based root models with 
continuum computational fluid dynamics 
via surrogate mapping functions driven by 
machine learning.

Data Fusion 
How can single-cell transcriptomes 
be integrated with bulk proteomics? 

• �Design exascale-scalable manifold-
alignment methods with uncertainty 
estimates.

Foundation Models 
How can regulatory motifs in Arabidopsis 
provide insights to support engineering of 
gene expression in bioenergy crops? 

• �Train multimodal large language models 
on federated genomic and phenotypic 
corpora, with domain-adaptation fine-
tuning and guardrails.

• �Develop new models that explore graph 
learning approaches for inferring causal 
connections in data.

Digital Twins 
How can researchers simulate engineered 
microbiome response to perturbations in 
growth conditions and individual genomes? 

• �Build hybrid physics–machine learning 
digital twins using partial differential 
equations/ordinary differential equation 
cosolvers accelerated by graph-based neu-
ral surrogates.

Verification 
and Validation

How can researchers ensure that pre-
dictions of optimal enzyme and path-
way designs hold up during wet lab 
implementation?

• �Implement out-of-distribution detection 
and conformal prediction uncertainty 
quantification layers across all machine 
learning pipelines.

• �Provide safety guardrails and monitoring 
processes for foundation models, agentic 
systems, and more.

Experiment Design 
and Automated 
Laboratories 

How can researchers design and experi-
mentally iterate toward optimal synthetic 
microbial consortia?  

• �Deploy Bayesian optimization and 
active-learning controllers in closed-loop 
robotic platforms.
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Fig. 4.1. Gaussian Process (GP) Regression Applied to Heterogeneous Biological Inputs. The plot illustrates GP-based 
function approximation, ƒ(x), designed to predict a biological or chemical property across a wide range of substances. The 
model is trained on known data (red dots) and generates a best-fit prediction (solid line) along with a measure of confidence 
(error bars). A key science challenge is how to compare and model entities that are fundamentally different, such as sim-
ple chemicals (e.g., acetone and methane) and complex viruses. To achieve accurate prediction in such a diverse dataset, 
upcoming science efforts should focus on developing new ways to describe these entities and measure their similarity to the 
model. [Courtesy University of California–Berkeley Center for Advanced Mathematics for Energy Research Applications, James 
Sethian, and Marcus Noack]

Impact
Developing new algorithms driven by advances in 
mathematics and computer science will play a promi-
nent role in enabling the next generation of biological 
discovery. These innovations will facilitate the model-
ing and understanding of complex biological systems, 
improve the generalizability and interpretability of AI 
models in biology, and accelerate progress in energy 
and biotechnology challenges. Furthermore, these 
advances will drive the success of other crosscutting 
approaches.

Target Activities
Novel Algorithms for Community-Level and 
Systems Biology. AI approaches that can operate on 

sparse, high-dimensional, and incomplete data are 
needed to develop novel algorithms capable of mod-
eling interactions among microbial communities and 
systems-level biological processes. These algorithms 
must move beyond the current focus on genes and 
genomes to address the complexity of biological sys-
tems at multiple organizational levels.

Bioinspired Computing Approaches. Developing 
biologically inspired computing systems that lever-
age principles such as parallel processing, distributed 
architectures, and adaptive learning for energy-efficient 
AI is a promising direction. By emulating the computa-
tional efficiency and adaptability of biological systems, 
new paradigms in AI—including sparse learning, 
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attention mechanisms, and energy-efficient training 
algorithms—can be realized.

Mathematical Innovations for Biological Data. 
Advances in mathematical frameworks are critical 
for analyzing and interpreting large-scale biological 
data. Innovations such as information geometry for 
biological network analysis, statistical models of col-
lective biological computing, and optimization theory 
for energy-constrained learning systems will enable 
deeper insights into biological complexity. Additional 
needs include novel optimization algorithms for met-
abolic networks, advanced AI architectures for protein 
structure prediction, improved graph-theoretical 
approaches for modeling cellular networks, and new 
mathematical frameworks for capturing multiscale bio-
logical processes.

Advancements in partial differential equations (PDEs) 
for complex mechanisms, computational topology, 
manifold learning, and information theory could 
enable better modeling of biological systems. Further-
more, developments in high-performance computing 
(HPC) can accelerate biological simulations and anal-
yses. These mathematical and computational advances 
will be increasingly important for engineering biologi-
cal solutions to energy challenges.

Causal Inference and Handling Incomplete Data. 
To advance causal inference in biological systems, new 
techniques need to be developed, including topologi-
cal, stochastic, and information theory–based methods 
for analyzing complex biological networks. Scalable 
computational approaches are essential, including spe-
cialized graph neural networks (Knutson et al. 2022) 
and Bayesian methods robust to biological noise and 
missing data (Noack and Ushizima 2023). Further-
more, innovations such as Bayesian Gaussian Process 
latent variable models (Ziaei et al. 2024) for dimen-
sionality reduction and manifold learning—as well as 
optimization techniques utilizing parallel tempering 
on exascale machines—can address challenges related 
to incomplete data and scale.

High-Performance Computing for Biological Simu-
lation. Leveraging advances in HPC will accelerate bio-
logical simulations and analyses, enabling the study of 

complex, multiscale biological phenomena. These com-
putational advances are essential for transforming the 
massive amounts of data generated by modern experi-
mental techniques into actionable scientific insights.

4.2 Multiscale and 
Multimodal Modeling
Rationale (Challenges and Opportunities)
Multiscale and multimodal modeling involves inte-
grating multiple models operating at different scales 
and modalities, utilizing diverse data inputs to achieve 
comprehensive insights into biological systems. The 
current lack of sufficient high-quality data spanning all 
relevant scales and modalities is a fundamental chal-
lenge for this type of modeling. Highly instrumented 
laboratory and field ecosystems have the potential to 
provide the necessary data. However, there are sev-
eral challenges in using multiple data sources, such as 
extracting and combining features from both struc-
tured information and unstructured data (e.g., images 
and videos). Recently, the sheer volume and hetero-
geneity of data have demanded new computational 
approaches to enhance the speed and scale of simula-
tions (Cao and Gao 2022).

AI offers tremendous opportunities to meet these 
challenges and predict how molecules, cells, and 
organisms interact with each other and the environ-
ment over time. For example, AI can enable analysis 
of large omics data to better understand microbial 
phenotypes and community metaphenomes (Gao 
et al. 2022). When decoding biological systems, mul-
timodal approaches can combine instrument data and 
simulations into inference networks that reveal gene 
regulatory connections responsible for physiological 
outcomes (Yang et al. 2021). Computational model-
ing incorporating statistical and mechanistic methods 
can identify key control points for microbiome engi-
neering (Leggieri et al. 2021). Data from genomic, 
metabolomic, proteomic, and phenotypic sources can 
be fused to create comprehensive models that forecast 
biological responses and interactions (Singh et al. 
2016; Mansoor et al. 2024).
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Building faithful representations of relevant variables 
that communicate across scales is a critical problem 
in multiscale modeling. Addressing this issue is espe-
cially challenging in biology, where transition models 
between scales must be carefully formulated and 
robustly deployed (see Fig. 2.2, p. 16). New AI tech-
niques have transformed the conventional Edisonian 
Design-Build-Test cycle into a multidimensional 
Design-Build-Test-Learn-Predict workflow, enabling 
the combination of multiscale and multimodal models 
that have significantly improved operational efficiency.

Key Questions
•	 �What new mathematical and computational 

approaches are needed to bridge genome-based 
molecular-scale models with ecosystem-scale 
models to better understand biological processes 
across scales? 

•	 �How can multiscale modeling leverage sparse, 
hard-to-acquire data to generate meaningful 
and verifiable predictions about biological pro-
cesses, especially in complex microbial and 
plant communities?

•	 �When using data across modalities, can AI enable 
insights beyond correlation?

Impact 
Advancements in multiscale and multimodal model-
ing, powered by AI, will enable deeper understanding 
of complex biological systems and their interactions 
across scales. These innovations will accelerate the dis-
covery and engineering of target organisms, molecules, 
and metabolic pathways for desired outcomes such as 
improved crop yields, enhanced production of valu-
able compounds, and increased resistance to disease 
and environmental stress. Integrating AI-driven work-
flows will reduce costs, optimize resource use (Naveed 
et al. 2024), and sharpen the focus of field experi-
ments (Singh et al. 2016; Gong et al. 2024; Mansoor 
et al. 2024; Zhang et al. 2024), ultimately facilitating 
enhanced bioproduct development and more efficient 
biotechnological processes.

Target Activities
Integration of Multiscale and Multimodal Data 
Using AI. AI offers unique opportunities for predict-
ing how molecules, cells, and organisms interact with 
each other and the environment over time, enabling 
the analysis of large omics datasets to better under-
stand microbial and plant phenotypes and community 
metaphenomes. Multimodal approaches can combine 
instrument data and simulations into inference net-
works that reveal gene regulatory connections respon-
sible for physiological outcomes (Eissing et al. 2011; 
Deisboeck et al. 2014; Cao and Gao 2022; Loumeaud 
et al. 2024). Fusing data from genomic, metabolomic, 
proteomic, and phenotypic sources enables the cre-
ation of comprehensive models that forecast biological 
responses and interactions (Yang et al. 2021).

Computational Modeling and Microbiome Engi-
neering. Computational modeling incorporating 
statistical and mechanistic methods can identify key 
control points for microbiome engineering (Gao et al. 
2022). These approaches aid in the discovery of target 
organisms, molecules, and metabolic pathways that 
produce desired compounds or environmental feed-
backs, supporting outcomes such as better-yielding 
crops, higher production of desired molecules, and 
greater resistance to disease and environmental stress.

AI-Enabled Simulation and Model Communication. 
AI-based simulation approaches such as surrogate mod-
els can replace comparatively expensive computational 
methods, while AI agents can automate the analysis 
of experimental data and refine and curate models. In 
addition, AI matching models generated from collected 
and measured data can communicate between highly 
accurate solvers at different scales, and AI co-scientists 
can assist in interpreting simulation results.

4.3 Data Fusion
Rationale (Challenges and Opportunities)
Advanced scientific computing, applied mathemat-
ics, and fundamental computer science underpin 
AI approaches that excel at integrating complex bio-
logical data, particularly the challenging multiomics 
and multimodal datasets that traditional mechanistic 
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approaches struggle to parse (Er et al. 2024). However, 
integrating this data relies upon robust data organi-
zation and standardized information associated with 
consistent sample IDs (U.S. DOE 2022a). Preparing 
“AI-ready” data requires careful attention to data 
sources, metadata, and domain knowledge prior to the 
development of encoding algorithms. 

Once properly prepared, AI techniques powered by 
linear algebra, optimization theory, and graph algo-
rithms can improve and accelerate integration by 
encoding diverse data types into a common vector 
format, enabling seamless association and analysis. 
Close collaboration between applied mathematicians, 
computer scientists and domain scientists is essential 
to ensure the resulting encodings have meaningful 
biological interpretations. This assessment process 
is likely to require the analysis of latent embedding 
spaces relative to different biological interpretations to 
guarantee meaningful separation of differently classed 
entities. Embedding space representations, obtained 
through high-performance parallel algorithms, could 
aid in understanding the impact of data uncertainty on 
biological conclusions, as these methods can identify 
variations that have the most impact on required bio-
logical interpretations.

Key Questions
•	 �How will computational methods grounded in 

advanced applied mathematics and computer sci-
ence enable the discovery of new behaviors, mech-
anisms, and designs of biological processes by, for 
example, extracting more information from avail-
able experimental data and coupling mechanistic 
insights to high-resolution imaging? 

•	 �What are the challenges and potential solutions for 
ensuring data interoperability and standardization 
when integrating high-resolution imaging and com-
putational advances? 

•	 �How can AI algorithms capable of integrating 
multimodal data (e.g., high-resolution imaging, 
omics, and environmental metadata, including text 
data) be designed to derive insights into microbial 
phenotypes and their role in ecosystem resilience?

Impact
Advances in AI-driven data fusion will enable the inte-
gration and interpretation of complex, multiscale, and 
multimodal biological data, facilitating new discov-
eries in systems biology, environmental science, and 
biotechnology. Improved data fusion will accelerate 
the identification of causal relationships, enhance the 
predictive power of biological models, and support the 
design and engineering of biological systems for accu-
rate outcomes. Developing robust, scalable, and inter-
pretable AI methods will provide new tools to address 
critical challenges in understanding and manipulating 
complex biological systems, ultimately leading to more 
efficient and impactful scientific research.

Target Activities
Develop AI-Driven Data Integration and Fusion 
Methods. AI-driven data integration techniques, 
backed by scalable algorithms and HPC resources, can 
support the detection of causal relationships from data. 
Data integration enables interventional and counter-
factual analysis, which can subsequently be integrated 
into mechanistic models (Pearl 2009). AI-driven data 
integration methods can leverage existing knowledge 
to predict unknown model parameters (e.g., growth 
rates and kinetic parameters) and aid in understanding 
the impact of data uncertainty on simulation parame-
terization, output, and interpretation (Schillings and 
Stuart 2017). 

Key scientific goals of AI-driven data integration 
include understanding pore-scale soil–water inter-
actions (Wang, Y. D., et al. 2021) and the impacts 
of plant and microbial phenotypes on emergent 
processes, such as biogeochemical fluxes, aggregate 
formation and turnover, and resistance or resilience to 
perturbation in flood and drought studies (Oikawa et 
al. 2024). Additionally, data fusion approaches aim to 
reveal how abiotic conditions influence biodiversity, 
biogeography, and future responses to environmental 
change. Another important role of data fusion is to 
integrate diverse data products to facilitate iterative 
design and engineering of plant, microbe, and micro-
bial community systems (Arkin et al. 2018).
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Advance Biostructure Recognition and Multimodal 
Data Analysis. To advance biostructure recognition 
from multiscale and multimodal data, novel, scal-
able computational methods that can leverage HPC 
resources need to be tailored to data from scientific 
experiments. These computational methods should 
couple AI with new mathematical frameworks and 
scalable algorithms to (1) reconstruct cell, soil, and 
protein structures from new and evolving complex 
imaging capabilities using scalable inverse techniques 
(Raissi et al. 2019); (2) seamlessly fuse data across 
multimodal and multiscale imaging techniques 
(Kalamkar and Geetha 2023); (3) extract feature vec-
tors and compact representations for recognition and 
classification (Robitaille et al. 2022); and (4) build ref-
erence libraries of AI-ready data containing observed 
and measured biological information.

Develop and Apply Foundation Models and Gener-
ative AI. Current and emerging efforts in foundation 
models, large language models (LLMs), and vision 
transformers (ViTs; Dosovitskiy et al. 2021), many 
leveraging exascale machines, could enable rapid 
analysis and understanding of text, images, and videos 
(Hoffmann, J., et al. 2022; Truhn et al. 2024). Founda-
tion models also have the potential to generate diverse 
data types, which could remediate studies hindered by 
data scarcity (Baek et al. 2021; Tunyasuvunakool et 
al. 2021). These new technologies are likely to enable 
more accurate identification of biomolecules, cellular 
structures, and organismal phenotypes. 

4.4 Foundation Models
Rationale (Challenges and Opportunities)
Foundation models are a class of general-purpose AI 
models trained on massive unlabeled datasets and 
characterized by their scalable multimodal capabil-
ities, since they often process and generate various 
forms of data. These models can be specialized and 
adapted to tasks based on domain-specific agents (see 
Fig. 4.2, p. 36) or on fine-tuning methods grounded 
in optimization theory and transfer learning (Zheng 
et al. 2025). For example, CACTUS (McNaughton 
et al. 2024) demonstrates how foundation models can 
become practical scientific assistants when wrapped in 

transparent, instrumented agents that enforce guard-
rails, expose intermediate reasoning, and seamlessly 
leverage HPC-hosted analytic workflows. 

Beyond applications in natural language processing, 
foundation models using scalable HPC infrastructure 
to combine text, images, and audio are increasingly 
being developed for various scientific domains. With 
vast amounts of data available across fields such as 
chemistry, physics, and biology, these models are 
beginning to revolutionize those fields with new 
insights, capabilities, and even discoveries. Foundation 
models have shown the ability to identify patterns and 
relationships that may be too intricate or subtle for tra-
ditional computational methods, thereby pushing the 
boundaries of scientific knowledge.

Incorporating foundation models in biology holds 
immense potential for understanding protein and 
molecular properties. For instance, Functional Annota-
tion of Proteins using Multimodal models (FAPM), a 
contrastive model linking natural language and protein 
sequence language, leverages both a pretrained protein 
sequence model and an LLM (Xiang et al. 2024). This 
allows FAPM to generate natural language labels for 
protein functions, including Gene Ontology terms 
and catalytic activity predictions. Such findings were 
broadly tested using public benchmarks (e.g., UniProt 
Knowledgebase’s Swiss-Prot) to demonstrate FAPM’s 
superior ability to understand protein properties com-
pared to models relying only on sequence or structural 
data. Promising results from few-shot learning mod-
els (Zhou et al. 2024) using minimal wet laboratory 
data indicate there are imminent opportunities to 
understand complex biological phenomena at unprec-
edented resolution across modalities (for example, in 
aggregating information across diverse biological read-
outs from sequencing, multiomics approaches, struc-
tural data, and other experimental measurements).

The intrinsic opacity of foundation models is a criti-
cal obstacle to their deployment in scientific settings. 
Their billions of parameters, arranged in deep, mul-
timodal architectures, resist model interpretability. 
Interpreting these models requires scalable methods 
that can attribute input modalities (e.g., sequence 
positions, image pixels, and spectral channels) to 

https://www.nature.com/articles/s41467-024-49798-6
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Fig. 4.2. Specializing 7B-Parameter Foundation Models with Cheminformatics Domain Benchmarking. Top panel: 
Agent workflow. CACTUS wraps any open-weight 7B (7 billion parameter) large language model from Hugging Face in a trans-
parent Thought-Action-Observation loop, routing questions through a menu of qualitative and quantitative cheminformatics 
questions. Because reasoning, tool calls, and checks occur entirely at inference time, a general-purpose foundation model 
is domain-specialized without fine-tuning or reinforcement learning from human feedback, preserving model weights while 
adding traceable guardrails. Bottom panel: Benchmark results across chemistry questions spanning 10 property classes. 
The domain-prompt and tool orchestration boost accuracy of some models significantly over minimal prompting, confirming 
that (1) compact open models can reach near-expert performance when coupled with domain tools and (2) prompt-level 
adaptation alone delivers large gains, vital when fine-tuning is compute constrained. [Reprinted under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0) from McNaughton, A. D., et al. 2024. 
“CACTUS: Chemistry Agent Connecting Tool Usage to Science,” ACS Omega 9(46), 46563–73. DOI:10.1021/acsomega.4c08408.]

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
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downstream predictions. Traditional interpretabil-
ity techniques, such as gradient‐based saliency, 
attention‐score analysis, or SHAP value approxima-
tions (SHapley Additive exPlanations; Lundberg et al. 
2020), must be rethought and highly parallelized to 
process massive datasets and model checkpoints simul-
taneously. HPC plays two roles in this space: (1) it 
provides the raw throughput for evaluating thousands 
of attribution queries in parallel and (2) supports the 
development of novel frameworks that reduce inter-
pretability to tractable subproblems.

The fragmented training of foundation models means 
researchers have a limited understanding of how 
models are trained, how they are distributed, which 
data types the models support, and the purpose of the 
models themselves. Building on community efforts 
for foundation models is challenging because domain-
specific datasets are siloed and common metadata 
standards are lacking. Key challenges in this context 
include defining the context of foundation models, 
identifying associated pretraining and fine-tuning 
tasks, developing scalable methods for model adap-
tation, and determining how users intend to interact 
with these models, particularly when using supercom-
puting resources. 

Because foundation models span modalities, unified 
metrics rooted in information theory and statistical 
learning are necessary to quantify cross‐modal feature 
importance and to ensure explanations generalize 
across data types. Without scalable, HPC‐driven 
interpretability toolkits grounded in rigorous applied 
math, foundation models risk being labeled as black 
boxes rather than leveraged to their full scientific 
potential. Establishing robust guardrails is essential 
to ensure these models can be deployed in a reliable 
way. Guardrails help prevent misuse, mitigate dataset 
and model biases, and ensure the models’ outputs are 
accurate and aligned with scientific objectives. Fur-
ther considerations for accuracy and alignment are 
discussed in the Verification and Validation section 
(see p. 41). 

Key Questions
•	 �How can foundation models (including LLMs) be 

useful for fast analysis and discovery? 

•	 �How can foundation models be enhanced to 
move beyond quick assessments and support 
deeper reasoning? 

•	 �What new foundation models are necessary to 
capture microbial community processes and their 
interactions with their environment? 

•	 �Does DOE need to create new foundation mod-
els to avoid unknown corporate and foreign 
influences?

•	 �Is it possible for DOE to create models with 
comparable performance, or should DOE 
focus on developing AI agents with controls for 
possible biases?

Impact
The advancement and responsible deployment of 
foundation models will transform scientific dis-
covery by integrating and analyzing massive mul-
timodal datasets across disciplines. These models 
will accelerate the identification of complex patterns 
and relationships, support new scientific insights, 
and facilitate breakthroughs in areas such as protein 
function prediction, molecular property analysis, and 
cross-modal data integration. By establishing robust 
standards, interpretability frameworks, and resource 
management strategies, the scientific community will 
be empowered to leverage foundation models in a 
reliable, transparent, and HPC-scalable manner, ulti-
mately driving innovation and expanding the frontiers 
of knowledge.

Target Activities
Development and Specialization of Foundation 
Models for Science

•	 �Advance the development, fine-tuning, and adapta-
tion of foundation models for scientific domains—
including biology, chemistry, and physics—by 
leveraging large, diverse, and multimodal datasets.
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•	 �Promote the creation of domain-specific agents and 
transparent, instrumented wrappers that enforce 
guardrails, expose intermediate reasoning, and 
leverage HPC-hosted analytic workflows.

•	 �Facilitate the use of foundation models in tasks 
such as protein function annotation (Xiang et al. 
2024), multimodal integration, and few-shot learn-
ing for biological discovery (Zhou et al. 2024).

Standardization, Metadata, and Community 
Collaboration 

•	 �Address fragmented foundation model training by 
developing and promoting common metadata stan-
dards, interoperable data formats, and open sharing 
of domain-specific datasets. 

•	 �Foster community efforts to define best practices 
for model pretraining, fine-tuning, distribution, 
and user interaction, particularly in the context of 
supercomputing resources.

•	 �Ensure robust guardrails to establish model align-
ment with scientific objectives and mitigate misuse 
and bias.

HPC-Driven Interpretability and Model 
Transparency 

•	 �Develop scalable, HPC-enabled interpretability 
toolkits that can attribute input modalities to pre-
dictions across massive multimodal models. 

•	 �Innovate new frameworks, such as randomized 
linear algebra for low-rank approximation of activa-
tion subspaces and tensor decomposition to isolate 
task-specific latent factors, to reduce interpretabil-
ity to tractable subproblems.

•	 �Create unified, information theory–based met-
rics to quantify cross-modal feature importance 
and ensure generalizability of explanations across 
data types.

Resource Management and Model Access 

•	 �Develop strategies for efficient compute resource 
management, including graphics processing unit 
allocation, job scheduling, and resource-aware 

parallelism, for hosting and serving foundation 
models on research infrastructure. 

•	 �Balance the use of commercial application pro-
gramming interface (API) services with open-
source and publicly developed models to address 
concerns about cost, intellectual property exposure, 
and accessibility. 

•	 �Adapt research infrastructure to meet the growing 
demand for foundation model applications in sci-
entific research.

4.5 Digital Twins 
Rationale (Challenges and Opportunities)
Digital twins (i.e., virtual replicas of physical systems; 
see Fig. 4.3, p. 39) emerged in engineering but are now 
revolutionizing various areas of study (Fuller et al. 
2020; NASEM 2024). A particularly promising appli-
cation is in soil microbiome science. Digital twins’ 
ability to process diverse data types in real time can 
address an urgent need for experimental and virtual 
models of soils, especially those surrounding plant 
roots (i.e., the rhizosphere). These models can bridge 
laboratory and field studies, rapidly improve feedstock 
crop performance under suboptimal growth condi-
tions, and develop a molecular-level understanding of 
systems (Zhalnina et al. 2019). 

At the ecosystem scale, hyperspectral imaging, auto-
mated rhizotron imaging, and real-time sensor data 
can inform digital ecosystem twins. Purpose-built 
microelectronic sensors codesigned for autonomous 
laboratory and field experiments can both inform and 
be informed by a digital ecosystem twin that captures 
micron-scale biogeochemical reactions responsible 
for ecosystem processes such as element cycling, 
plant–microbe exchange, and ecosystem productivity. 
Integrating these modalities through graph-based data 
fusion, manifold alignment, and in situ data compres-
sion can produce highly predictive simulations of plant 
growth, microbial metabolism, and environmental 
feedback.

AI modeling approaches—underpinned by scal-
able ML libraries, advanced data management, and 

https://journals.asm.org/doi/10.1128/mbio.01175-18
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codesign of hardware–software stacks—can iden-
tify key biological mechanisms driving productivity 
and stress tolerance, supporting the development of 
robust crop and feedstock systems. Deep learning 
techniques such as convolutional neural networks 
(Sordo et al. 2024) on HPC platforms can be used 
to analyze high-throughput plant and microbial phe-
notyping data, enabling the identification of traits 
associated with stress tolerance, microbial metabolism, 
and yield potential. Combining AI with mechanistic 
or data-driven models on HPC architectures allows 
researchers to simulate and predict plant–microbe–soil 
interactions under abiotic stresses (e.g., drought, flood, 
fire, and land management) using scalable parallel algo-
rithms and resilient workflow engines. 

Given the long duration of most plant studies, espe-
cially in the field, HPC-driven simulation pipelines can 
prioritize experiments to close key knowledge gaps by 
integrating data from both laboratory and field twins 

into experimental design. For example, digital twins 
can integrate data from laboratory and field twins to 
direct iterative experiments (see Fig. 4.4, p. 40) aimed 
at identifying the biological mechanisms driving field 
observations. To expedite digital twin development, 
reproducible and containerized experimental plat-
forms of increasing biological, chemical, or physical 
complexity will be coupled with scalable computa-
tional workflows, empowering progressive translation 
from controlled systems to natural environments. This 
approach enables the construction of digital twins for 
highly controlled, well-defined systems, which can 
later be translated to more complex environments. 

Key Questions
•	 �Which new algorithms and scalable computational 

methods will enable digital twins to optimize biol-
ogy experiments, generate and test hypotheses, 
and promote robust experimentation (e.g., reduced 

Fig. 4.3. Elements of the Digital Twin Ecosystem. Digital twins create a dynamic and intimate interaction among models, 
data, and decisions. The virtual representation evolves with the real-world biological (physical) counterpart, generating a 
feedback loop. [Image republished from NASEM. 2024. Foundational Research Gaps and Future Directions for Digital Twins. 
National Academies of Sciences, Engineering, and Medicine. National Academies Press, Washington, D.C., U.S. https://nap.
nationalacademies.org/catalog/26894/foundational-research-gaps-and-future-directions-for-digital-twins]

https://nap.nationalacademies.org/read/26894/chapter/1
https://nap.nationalacademies.org/read/26894/chapter/1
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risk of unintended consequences for microbial 
interventions)? 

•	 �How can upcoming exascale computational infra-
structure and advanced software ecosystems impact 
the creation and execution of digital twins?

Impact
Integrating digital twins with AI and HPC will 
revolutionize the study and engineering of 

plant–microbe–soil systems, enabling real-time, pre-
dictive understanding of complex biological processes. 
These advances will accelerate the development of 
resilient crops and feedstocks, support novel biomanu-
facturing strategies, and facilitate the rapid translation 
of laboratory findings to field applications. Ultimately, 
digital twins will empower researchers to design, opti-
mize, and scale biological systems for enhanced pro-
ductivity and resilience.

Fig. 4.4. Digital Twins Drive Experiments. Digital twins will enable effective, integrated experimentation and simulation 
through experimental feedback and model-driven control of both laboratory and field experiments. (A) EcoPOD at Lawrence 
Berkeley National Laboratory [Courtesy LBNL]. (B) Advanced Plant Phenotyping Laboratory at Oak Ridge National Laboratory 
[Courtesy ORNL]. (C) Pacific Northwest National Laboratory Phenotypic Responses experiment at a Washington State Univer-
sity field station [Courtesy PNNL].

C

B
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Target Activities
Develop and Integrate Digital Twins for Microbial 
Communities and Ecosystems

•	 �Advance the development of digital twins to 
understand and predict the behavior of microbial 
communities in complex environments, such 
as the soil microbiome, to transform the field of 
soil restoration. 

Soil ecosystem digital twins could be used to under-
stand the genomic and molecular basis of how soil 
microbiomes interact with plants to generate emergent 
functions such as organic matter decomposition and 
storage, stress resilience, plant growth promotion, and 
biomining of target elements. Digital twins encourage 
a learn-from-nature approach that supports the devel-
opment of novel biomanufacturing technologies. 

Apply AI and Digital Twins in Biomanufacturing 
and Biosystems Engineering

•	 �Employ AI-enabled digital twins to simulate and 
optimize microbial metabolism for the produc-
tion of biofuels, biomaterials, and other valuable 
compounds. 

By understanding intricate microbial metabolic net-
works, researchers can engineer strains with improved 
performance and efficiency and develop chassis 
organisms—microbial hosts of genetic circuits—for 
biosensors, biomanufacturing, and environmental 
probiotic applications. Digital twins also provide pre-
dictive capabilities for scaling up optimized strains and 
microbiomes from the bench scale to production or 
field scales. 

Leverage HPC and DOE Exascale Infrastructure 

•	 �Utilize DOE exascale infrastructure to accelerate 
microbiome engineering by integrating physical 
and AI models, creating predictive tools, and devel-
oping novel hypotheses for microbial interactions 
and gene, metabolite, and protein functions. 

•	 �Couple digital twin approaches with HPC-driven 
simulation pipelines to prioritize and design 
experiments, close knowledge gaps, and enable 

translation from controlled systems to natural 
environments.

4.6 Verification and Validation
Rationale (Challenges and Opportunities)
Verification and validation (V&V) in AI comprise 
systematic methodologies designed to rigorously 
assess the accuracy, reliability, and robustness of AI 
systems (Oberkampf and Roy 2010; U.S. DOE 2020; 
U.S. DOE 2023a ). Verification confirms the AI work-
flow is implemented correctly, and validation (i.e., 
benchmarking) shows that its outputs represent reality 
within the intended domain. Methodologies include 
model-agnostic checks and model-specific methods 
that ensure AI predictions align with known biology 
and experimental data for continuous improvement 
(see Fig. 4.5, p. 42). 

Together, V&V provide formal proofs or statistical 
evidence that the system meets explicit accuracy, reli-
ability, and safety targets. These processes emphasize 
transparency in decision-making, clarity in model 
behaviors, and conformity to established scientific pro-
tocols (Oberkampf  and Roy 2010). V&V protocols 
particularly focus on guardrails, explainability, uncer-
tainty quantification, robustness against variations in 
data inputs, safety in diverse operational contexts, and 
accountability through detailed model documentation 
and validation procedures. 

For example, Monte Carlo dropout can quantify 
uncertainty by sampling multiple predictions, and 
SHAP values provide interpretability by attributing 
prediction importance to input features (Lundberg 
et al. 2020). When it is not possible to ground-truth 
using first principles, theory, or experimental data 
(see Section 2.3: AI-Enabled Drivers for Experimen-
tal Systems, p. 17), comparing multiple independent 
models is critical, though this is acknowledged as a 
weaker form of V&V. 

Despite advancements, significant challenges per-
sist within V&V in biological contexts, particularly 
in validating AI models across different experi-
mental conditions, managing rare or infrequent 
biological phenomena, and effectively integrating 



42

Envisioning Frontiers in AI and Computing for Biological Research

January 2026							            U.S. Department of Energy Office of Science	

domain-specific expertise with AI-derived insights. 
Biological systems are inherently complex and vari-
able, making reliable AI-based predictions particularly 
challenging. Effective V&V involves quantifying and 
explicitly representing the confidence and uncertainty 
associated with AI model predictions, thereby provid-
ing clarity on their reliability. 

Incorporating interpretability within V&V enables 
researchers to understand the underlying biological 
mechanisms guiding AI-driven insights. For instance, 
AI-driven integration of multiomics data necessitates 
robust and scalable methods capable of handling het-
erogeneous data types, varying scales, missing values, 
biological noise, and technical artifacts. Rigorous V&V 
strategies must include extensive validation protocols, 
uncertainty quantification frameworks such as Bayes-
ian inference, and adaptive methodologies tailored to 
diverse experimental scenarios, such as transfer learning 
approaches that validate models across varied datasets.

Scientific rigor demands reproducibility and thor-
ough validation of AI-derived results versus direct 

observations (e.g., using digital and experimental twins 
to continuously benchmark model performance; see 
Fig. 4.4, p. 40). Robust V&V practices mandate trans-
parent methodologies and comprehensive documenta-
tion, including version-controlled repositories for code; 
clearly standardized data formats; and detailed records 
of model architectures, hyperparameters, and training 
protocols. Transparency facilitates reproducibility and 
independent validation of findings. Experimental stan-
dardization and replication also facilitate those quali-
ties, making them critical components of V&V.

In biological research—where field experiments can 
take over a year—erroneous predictions from AI sys-
tems can lead to significant setbacks. Hence, robust 
V&V protocols should incorporate systematic mech-
anisms for error detection, clearly defined uncertainty 
thresholds, methods for detecting out-of-distribution 
scenarios, and continuous validation against new 
experimental data, such as real-time anomaly detection 
algorithms, to proactively mitigate risks and ensure 
reliability.

Fig. 4.5. Verification and Validation Within the Experimental Cycle. Incorporating rigorous assessment of AI predic-
tions into the design and testing of hypotheses improves experimental outcomes, which reinforces the AI models’ accuracy 
and reliability.
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Key Questions
•	 �Which scalable AI methods or tools are criti-

cal for accurately simulating biological systems 
while rigorously incorporating and quantifying 
uncertainties? 

•	 �What specific V&V methods and metrics should be 
developed to ensure AI predictions are interpreta-
ble and robust for biologists? 

•	 �How can human-in-the-loop tools be designed to 
effectively integrate human expertise without creat-
ing bottlenecks?

Impact 
Embedding rigorous V&V practices into AI-integrated 
biological research workflows will enhance scientific 
innovation, robustness, and reproducibility. These 
approaches will clearly communicate model limitations, 
quantify prediction confidence, and foster trust and 
engagement with the scientific community and public 
stakeholders. Ultimately, robust V&V will optimize 
resource allocation, enable reliable AI-driven discovery, 
and accelerate progress in complex biological research.

Target Activities
Develop and Implement Comprehensive V&V 
Protocols 

•	 �Develop robust V&V protocols that combine 
model-agnostic and model-specific checks, includ-
ing mathematical and logistical consistency, numer-
ical stability, and alignment with biological data.

•	 �Incorporate uncertainty quantification meth-
ods (e.g., Monte Carlo dropout and Bayesian 
inference), interpretable feature selection, and 
out-of-distribution detection to ensure reliable and 
explainable AI predictions.

Integrate V&V into Scalable Workflows and HPC 
Platforms 

•	 �Leverage HPC platforms and scalable workflows to 
automate V&V processes, facilitate rigorous nor-
malization, enable uncertainty-aware data integra-
tion, and support real-time anomaly detection. 

•	 �Promote the use of digital and experimental twins 
for continuous benchmarking and validation of 
AI models.

Promote Transparency, Reproducibility, and 
Documentation 

•	 �Establish best practices for transparent V&V meth-
odologies, including version-controlled repositories, 
standardized data formats, and detailed documen-
tation of model architectures, hyperparameters, and 
training protocols. 

•	 �Encourage experimental standardization and repli-
cation to support independent validation and repro-
ducibility of findings.

Establish Adaptive and Domain-Aware V&V 
Strategies 

•	 �Develop adaptive V&V methodologies tailored 
to diverse experimental scenarios, such as 
transfer learning for cross-dataset validation, 
and approaches for handling rare or infrequent 
biological phenomena.

•	 �Foster collaboration between domain experts 
and AI practitioners to integrate domain-specific 
knowledge into V&V processes.

4.7 Experiment Design and 
Automated Laboratories
Rationale (Challenges and Opportunities)
Experiment design is the process of planning and 
selecting the most effective methods of generating or 
acquiring data to reliably investigate and answer scien-
tific questions, as well as to test, refine, and benchmark 
models (see Section 4.6: Verification and Validation, 
p. 41). With the increase in data from growing DOE 
instrument capabilities and other sources, choosing 
among potential experiment designs has become 
nontrivial, making expertise and intuition insufficient 
and suboptimal (U.S. DOE 2022c). The rise of HPC, 
AI, and automation introduces novel, human-in-the-
loop approaches (e.g., machine teaching, interactive 
AI, and active learning) to guide experimental choices 
(Mosqueira-Rey et al. 2022).
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Automated laboratories have revolutionized experi-
mental capabilities by enabling high-throughput data 
generation, significantly increasing the speed and scale 
of scientific inquiry. These automated systems can exe-
cute complex experimental protocols with precision 
and consistency, generating vast amounts of data. For 
example, active learning models are capable of select-
ing the next set of experiments with high accuracy 
(Ding et al. 2024). Such approaches can balance the 
exploitation of current knowledge to achieve the learn-
ing objective with the exploration of the experimental 
space to accelerate discovery. 

Building upon automated laboratories, autonomous 
experimentation aims to further enhance the research 
process by introducing AI-driven decision-making 
with HPC-backed data analysis workflows (see 
Fig. 4.6, p. 45). Autonomous experimentation systems, 
often referred to as “research robots” or “self-driving 
labs,” can plan, execute, and evaluate experiments with 
minimal human intervention. These systems leverage 
AI algorithms to analyze experimental data in real 
time, learn from past results, and adapt future experi-
ments, optimizing for specific research objectives.

Autonomous experiments require codifying biolog-
ical design objectives into mathematically tractable 
optimization problems. This challenge is exacerbated 
by several factors. First, the objectives need to be 
transformed into the language of optimization: what 
is the autonomous experiment supposed to do? 
Should it home in on particularly interesting design 
choices or explore areas with little prior knowledge? 
Such decisions are difficult, and it is important to 
build mathematical descriptors that remove bias and 
systematically explore the design space. Second, the 
design space can be very large: building representa-
tions, energy functionals, probabilistic formulations, 
and efficient optimization methods are all important. 
These activities require state-of-the-art integration of 
mathematical ideas, scalable algorithms, partitioning 
and deployment in highly parallel compute environ-
ments, faithful representations of relevant biological 
formalisms, and close coupling to available data and 
domain knowledge (e.g., published literature). A 

scalable AI-driven system that meets these challenges 
holds tremendous potential. 

Novel architectures, including specialized hardware 
and edge AI computing, offer exciting opportunities 
to advance autonomous experimentation. Integrating 
AI accelerators into experimental setups facilitates 
on-site computations, reducing latency and improving 
efficiency. Deploying AI capabilities directly at data 
sources enables real-time data processing and decision-
making, allowing for rapid responses to dynamic 
experimental conditions. Experiment design, auto-
mated laboratories, and autonomous experimentation 
(Noack et al. 2020) are transformative approaches 
for investigating complex biological systems, particu-
larly those with poorly characterized gene functions 
or community-level phenotypes. By integrating AI, 
HPC, and automation, researchers can develop com-
putational approaches that ensure model generaliza-
tion to diverse environmental conditions, facilitating 
rapid phenotyping and accelerating the discovery of 
biological processes.

Key Questions
•	 �How can novel AI and scalable computational 

methods impact laboratory automation (e.g., 
robotics)?

•	 �Can self-driving laboratories streamline analysis 
of complex multimodal data (e.g., genomic and 
phenomic data)?

•	 �How can AI effectively incorporate prior scientific 
knowledge into data-driven modeling? 

•	 �What new AI tools that leverage exascale and edge 
computing will enable and accelerate real-time 
monitoring and feedback for plant, fungal, and 
microbial systems? 

•	 �What tools and algorithms are needed to advance 
AI experimental design? 

•	 �To what extent can AI-powered automated labo-
ratories design and execute experiments to reach 
desired scientific discoveries?
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Fig. 4.6. Integrated AI with Automated Fabricated Ecosystems. (A) Appli-
cation of Uniform Manifold Approximation and Projection (UMAP) to embed 
normalized spectra into a two-dimensional space for analysis of 3D hyperspec-
tral imaging leaf data collected using EcoBOTs (see C panel). (B) Creation of 
RhizoNet, a computer vision system based on deep learning to automate root 
analysis from fabricated laboratory ecosystems acquired using the EcoBOT. 
(C) EcoBOT capabilities at Lawrence Berkeley National Laboratory. [(A) reprinted 
under a Creative Commons Attribution 4.0 International License (CC BY 4.0) 
from Zwart, P. H., et al. 2025. “Hyperspectral Segmentation of Plants in Fab-
ricated Ecosystems,” Frontiers in High Performance Computing 3. DOI:10.3389/
fhpcp.2025.1547340. (B) Reprinted under a Creative Commons Attribution 4.0 
International License (CC BY 4.0) from Sordo, Z., et al. 2024. “RhizoNet Segments 
Plant Roots to Assess Biomass and Growth for Enabling Self-Driving Labs,” 
Scientific Reports 14, 12907. DOI:10.1038/s41598-024-63497-8. (C) Courtesy 
Lawrence Berkeley National Laboratory]

A

B

C

https://www2.census.gov/programs-surveys/popest/tables/2020-2024/state/totals/NST-EST2024-POP.xlsx
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.nature.com/articles/s41598-024-63497-8
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Impact
Integrating advanced experiment design, automated 
laboratories, and autonomous experimentation will 
transform biological research by enabling rapid, 
scalable, and reproducible investigation of complex 
systems. These approaches will accelerate scientific 
discovery, optimize resource allocation, and ensure 
robust model development and validation. Ultimately, 
the combination of AI, HPC, and automation will 
empower researchers to explore vast experimental 
landscapes, generate high-quality data, and drive inno-
vation in biology and biotechnology.

Target Activities
Develop AI-Driven Experiment Design and Active 
Learning Approaches 

•	 �Develop and implement AI-driven experiment 
design strategies that combine human-in-the-loop 
methods (e.g., machine teaching, interactive AI, 
and active learning) with scalable HPC workflows 
to optimize data acquisition, model refinement, and 
hypothesis testing.

Advance Automated and Autonomous Laboratory 
Infrastructure

•	 �Expand the deployment of automated and auton-
omous laboratory systems capable of executing 

high-throughput experiments, real-time data analy-
sis, and adaptive experimental planning.

•	 �Integrate AI accelerators and edge computing for 
on-site data processing and rapid decision-making.

Optimize Experimental Objective and Design 
Spaces 

•	 �Codify biological design objectives as mathemat-
ically tractable optimization problems to enable 
systematic exploration of large design spaces. 

•	 �Develop surrogate models, probabilistic frame-
works, and efficient optimization algorithms 
to facilitate autonomous experimentation and 
discovery.

Integrate AI, HPC, and Automation for Rapid 
Biological Discovery

•	 �Leverage the synergy of AI, HPC, and automation 
to accelerate phenotyping, model generalization, 
and the investigation of complex biological systems, 
including those with poorly characterized gene 
functions and community-level phenotypes.
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Concluding Remarks
Chapter 5

Multidisciplinary discussions at the 2025 workshop 
on Envisioning Frontiers in AI and Computing for 
Biological Research identified four priority research 
directions (PRDs): Multimodal Data Assembly, 
Multiscale Biosystems Simulation, AI-Enabled Driv-
ers for Experimental Systems, and Novel Algorithms 
for Genomics. These PRDs underscore the essential 
integration of advanced computational methodologies, 
such as deep learning, physics-informed modeling, 
scalable algorithms, and exascale computing platforms, 
to address complex biological challenges relevant to 
DOE missions.

While significant progress has been made, this 
workshop highlighted several areas requiring deeper 
computational specificity. Algorithmic innovation, 
explicit treatment of computational complexity with 
HPC, and rigorous verification and validation mech-
anisms are critical gaps. Addressing them will involve 
detailed exploration and development of specific com-
putational methods such as graph neural networks, 
probabilistic inference, Bayesian optimization, and 
multiresolution modeling, all carefully tailored to bio-
logical contexts.

Many areas of biology continue to be data sparse. 
The DOE national laboratory system is uniquely 
positioned to generate the massive quantities of 
high-quality data needed to fill this gap by leveraging 
existing facilities and deep domain expertise. DOE 
user facilities are unmatched data generators because 

they operate multibillion-dollar scientific instruments 
that industry cannot afford, enabling researchers 
to conduct experiments under extreme conditions 
and at atomic resolution. The quality of this data is 
guaranteed by highly expert teams of scientists and 
engineers who conduct the experiments and operate 
the instruments. This specialized expertise ensures 
data meets rigorous quality standards and includes 
rich, standardized metadata, making the resulting 
datasets inherently AI ready and superior for train-
ing robust models. Unlike proprietary industry data, 
DOE’s focus on basic research and open access cre-
ates massive public datasets for the entire scientific 
community.

Challenges and opportunities exist to improve 
throughput, accuracy, reproducibility, efficiency, and 
capability of experimental data generation platforms. 
Applying AI algorithms in this domain can improve 
the identification of knowledge gaps and guide the 
design of experimental campaigns that most effectively 
address such unknowns.

Advancing the computational biology frontier 
demands continued interdisciplinary collaboration, 
investment in computational infrastructure, and stra-
tegic alignment between computational scientists 
and biologists (see Table 5.1, p. 48). Applying the full 
potential of AI, ML, and computational sciences to 
biological research will drive transformative discover-
ies and enable unprecedented capabilities.
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Table 5.1. Crosscutting Methodological Innovations in ASCR that Can Support BER Investigations

Focus Area Biological Challenge ASCR Methodological Innovation

Novel  
Algorithms 

Identify systems-level emergent 
behavior from molecular rules

Sparse learning; bioinspired distributed architectures

Multiscale and 
Multimodal 
Modeling

Obtain mechanistic understanding 
of biological interactions across 
scales

Multiscale algorithms; exascale simulations; 
multimodal data integration and representation; 
agent-based modeling

Data Fusion 
Fuse multiomics and imaging 
into causal models

Probabilistic models; exascale embedding 
and contrastive learning frameworks

Foundation 
Models 

Generate and reason about 
hypothetical biomolecular functions

Federated multimodal large language models with 
fine-tuning pipelines and guardrails

Digital Twins 
Conduct virtual crop, soil, and 
microbiome experiments

Hybrid physics–machine learning twin frameworks; 
surrogate machine learning cosolvers on exascale

Verification 
and Validation

Enable reliable prediction under 
biological variability

Conformal prediction; out-of-distribution detection; 
reproducible machine learning workflows

Experimental 
Design and 
Automated 
Laboratories

Incorporate closed-loop biodesign 
via robotics

Active learning; surrogate models; edge AI integration; 
hardware/software codesign; digital twins
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Workshop Agenda
Appendix A

Day 1: February 4, 2025
8:00–9:00 a.m.	 Breakfast

9:00–9:15 a.m.	 BER and ASCR Welcome 
	 �Speakers: Dorothy Koch, Associate Director, U.S. Department of Energy (DOE) Biological 

and Environmental Research (BER) program; Ceren Susut, Associate Director, DOE 
Advanced Scientific Computing Research (ASCR) program

9:15–9:30 a.m.	 Workshop Overview 
	� �Speakers: Daniela Ushizima (co-chair), Lawrence Berkeley National Laboratory; 

Christopher Henry (co-chair), Argonne National Laboratory

9:30–10:00 a.m.	 Foundation Models and Exascale Computing 
	 Speaker: Rick Stevens, Argonne National Laboratory

10:00–10:15 a.m.	 Experiment Design with AI 
	 Speaker: Kirsten Hofmockel, Pacific Northwest National Laboratory

10:15–10:30 a.m.	 Break

10:30 a.m.–12:00 p.m.	 Breakout Sessions 1
	 Foundation Models: Three Groups
	 Experiment Design: Three Groups

12:00–1:00 p.m.	 Lunch and Group Photo

1:00–1:45 p.m.	 Morning Breakout Report-Outs: Foundation Models and Experiment Design

1:45–2:00 p.m.	 Automated Labs/ Science 
	 Speaker: Andrew Beam, Lila Sciences

2:00–2:30 p.m.	 Data Fusion 
	 Speaker: David Baker, University of Washington

2:30–3:00 p.m.	 Automated Labs 
	 Speaker: D.J. Kleinbaum, Emerald Cloud Lab

3:00–3:10 p.m.	 Break

3:10–4:40 p.m.	 Breakout Sessions 2
       	 Data Fusion: Three Groups 
	 Automated Labs: Three Groups

4:40–5:40 p.m.   	 Afternoon Breakout Report-Outs: Data Fusion and Automated Labs

5:40 p.m.               	 Adjourn

https://drive.google.com/drive/folders/1hHT05bf12NWws0Isq8_StlhpZtNB0D4Z
https://drive.google.com/drive/folders/1u5KRSg8a-IZ7fTSSh-XVzFc_Lw1r7im3
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Day 2: February 5, 2025
8:00–9:00 a.m.   	 Breakfast

9:00–9:20 a.m.   	 Day 1 Review and Day 2 Plan 
	� �Speakers: Christopher Henry and Daniela Ushizima

9:20–9:35 a.m.   	 Digital Twins 
	� �Speaker: Shalin Mehta, Chan Zuckerberg Biohub

9:45–10:00 a.m.   	 Digital Twins 
	� �Speaker: Jesse Tetreault, NVIDIA

10:00–10:15 a.m. 	 Trustworthy AI 
	 Speaker: Sergio Baranzini, University of California–San Francisco

10:15–10:30 a.m.  	 Trustworthy AI 
	 Speaker: Prasanna Balaprakash, Oak Ridge National Laboratory 

10:30–10:35 a.m.  	 Break

10:45 a.m.–12:00 p.m.  	 Breakout Sessions 3
	 Digital Twins: Three Groups
	 Trustworthy AI: Three Groups

12:00–1:00 p.m. 	 Lunch and Group Photo

1:00–2:00 p.m.   	 Morning Breakout Report-Outs: Digital Twins and Trustworthy AI

2:00–2:15 p.m.   	 Novel Algorithms 
	 Speaker: Elebeoba May, University of Wisconsin–Madison

2:15–2:30 p.m.   	 Novel Algorithms 
	 Speaker: James Sethian, University of California–Berkeley

2:30–3:00 p.m.   	 Multimodal Modeling at Exascale 
	 Speaker: Arvind Ramanathan, Argonne National Laboratory

3:00–3:10 p.m.   	 Break

3:10–4:40 p.m.   	 Breakout Sessions 4
	 Novel Algorithms: Three Groups
       	 Multiscale, Multimodal Modeling: Three Groups

4:40–5:40 p.m.   	 Afternoon Breakout Report-Outs: Novel Algorithms and Multiscale Modeling

5:40 p.m.               	 Closing Remarks 
	 Speakers: Margaret Lentz, ASCR; and Ramana Madupu, BER

6:00 p.m.	 Adjourn

Day 3: February 6, 2025
8:00–9:00 a.m.   	 Breakfast (all workshop participants who might be interested)

9:00–10:30 a.m.   	 Writing Session

10:30–11:00 a.m.    	 Break

11:00 a.m.–12:00 p.m.  	 Writing Session

12:00 p.m.          	 Adjourn

https://drive.google.com/drive/folders/1MRPiO6vGUM5zvLIV8zvfatDM-ToQ13Jm
https://drive.google.com/drive/folders/1njlo3a99xOTjLLTHV3z1-Jkq-QO9zapu
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Workshop Attendees
Appendix B

Co-Chairs
Daniela Ushizima, Lawrence Berkeley 				 
	 National Laboratory

Christopher Henry, Argonne National Laboratory

Program Committee
Prasanna Balaprakash, Oak Ridge National Laboratory

Ayan Biswas, Los Alamos National Laboratory

Adrienne Hoarfrost, University of Georgia

Kirsten Hofmockel, Pacific Northwest 				 
	 National Laboratory

Neeraj Kumar, Pacific Northwest National Laboratory

Arvind Ramanathan, Argonne National Laboratory

Trent Northen, Lawrence Berkeley National Laboratory

Strategic Committee
Margaret Lentz, U.S. Department of Energy

Ramana Madupu, U.S. Department of Energy

Todd Munson, Argonne National Laboratory

Workshop Attendees
Jacqueline Acres, Whitman College

Jonas Actor, Sandia National Laboratories

Francis Alexander, Argonne National Laboratory

Todd Anderson, U.S. Department of Energy

Sergio Baranzini, University of California–San Francisco

Paul Bayer, U.S. Department of Energy

Arunima Bhattacharjee, Pacific Northwest 				 
	 National Laboratory

Debsindhu Bhowmik, Oak Ridge National Laboratory

Aivett Bilbao, Pacific Northwest National Laboratory

Benjamin Bowen, Lawrence Berkeley 				 
	 National Laboratory

Benjamin Brown, U.S. Department of Energy

James Bruner, Oak Ridge Institute for Science 		
	 and Education

Aydın Buluç, Lawrence Berkeley National Laboratory

William Cannon, Pacific Northwest National Laboratory

Romy Chakraborty, Lawrence Berkeley 				 
	 National Laboratory

Christine Chalk, U.S. Department of Energy

Tianlong Chen, University of North Carolina–Chapel Hill

Nicholas Chia, Argonne National Laboratory

Kriti Chopra, Brookhaven National Laboratory

Markus Covert, Stanford University

Kutter Craig, Oak Ridge Institute for Science 				
	 and Education

Tanner Crowder, U.S. Department of Energy

Kevin Dalton, SLAC National Accelerator Laboratory

Paramvir Dehal, Lawrence Berkeley 				 
	 National Laboratory

Omar Demerdash, Oak Ridge National Laboratory

Sorin Draghici, National Science Foundation

Hal Finkel, U.S. Department of Energy

Ferdinando Fioretto, University of Virginia

Michael Fisher, U.S. Department of Energy

Marco Fornari, U.S. Department of Energy
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Andrew Fowler, Oak Ridge Institute for Science 		
	 and Education 

Zachary Fox, Oak Ridge National Laboratory

Héctor García Martin, Lawrence Berkeley 				 
	 National Laboratory

Justin Hnilo, U.S. Department of Energy

Bin Hu, Los Alamos National Laboratory

Yunha Hwang, Tatta Bio

Daniel Jacobson, Oak Ridge National Laboratory

Paul Jensen, University of Michigan

Ravinder Kapoor, U.S. Department of Energy

Sagar Khare, Rutgers University 
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Carter Knutson, Pacific Northwest National Laboratory

Dorothy Koch, U.S. Department of Energy

Raga Krishnakumar, Sandia National Laboratories

Resham Kulkarni, U.S. Department of Energy

Yunqi Li, Brookhaven National Laboratory

Felice Lightstone, Lawrence Livermore 				 
	 National Laboratory

Pavel Lougovski, U.S. Department of Energy

Xiaoyi Lu, University of California–Merced

Sandeep Madireddy, Argonne National Laboratory

Costas Maranas, The Pennsylvania State University
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Jason McDermott, Pacific Northwest 				 
	 National Laboratory

Ambarish Nag, National Renewable Energy Laboratory

Peter Nugent, Lawrence Berkeley National Laboratory

Robinson Pino, U.S. Department of Energy

David Rabson, U.S. Department of Energy
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	 Laboratory
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Sanna Sevanto, Los Alamos National Laboratory

Seth Steichen, National Renewable Energy Laboratory

Rick Stevens, Argonne National Laboratory

Ceren Susut, U.S. Department of Energy

Amy Swain, U.S. Department of Energy

Deneise Terry, Oak Ridge Institute for Science 		
	 and Education
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	 National Laboratory
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	 National Laboratory

John Vant, Oak Ridge National Laboratory

Ming Wang, University of California–Davis
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Pamela Weisenhorn, Argonne National Laboratory
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Chenling Xu, Lawrence Livermore National Laboratory

Shinjae Yoo, Brookhaven National Laboratory

Byung-Jun Yoon, Brookhaven National Laboratory

Larry York, Oak Ridge National Laboratory

Karsten Zengler, University of California–San Diego

Petrus Zwart, Lawrence Berkeley National Laboratory
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Glossary
Appendix C

AI co-scientist
An artificial intelligence system designed to act as a 
collaborative partner in scientific research, contribut-
ing substantively to hypothesis generation, experimen-
tal design, data analysis, interpretation, and discovery 
by integrating domain knowledge, reasoning, and 
adaptive learning in concert with human scientists.

anaerobic
A process, organism, or environment that occurs or 
exists in the absence of molecular oxygen.

biological dark matter
Biological molecules or organisms that are unde-
tected or are detected but lack known functions.

causal inference
AI/statistical approaches designed to identify and 
understand the cause-and-effect relationships 
across data.

computational topology
Topology examines point sets and their invariants 
under continuous deformations, such as the number 
of connected components, holes, tunnels, or cavities. 
Computational topology deals with the complexity of 
topological problems and with the design of efficient 
algorithms for their solution in case these problems 
are tractable.

contrastive model
A machine learning model trained to learn represen-
tations by distinguishing between similar (positive) 
and dissimilar (negative) pairs of data, optimizing 
an objective function that increases similarity in the 
learned feature space for related inputs while maxi-
mizing separation for unrelated ones.

convolutional neural networks (CNN)
A class of deep, feedforward artificial neural net-
works designed to automatically and adaptively learn 
spatial hierarchies of features from structured data 
(such as images, sequences, or volumes) by applying 
convolutional operations, nonlinear activations, and 
pooling across multiple layers.

counterfactual explanation
An interpretable model output that identifies min-
imal changes to input features of a given instance 
that would alter the model’s prediction to a specified 
desired outcome, thereby offering insight into the 
model’s decision boundaries and causal behavior.

deep learning–based spectral analysis
The application of deep neural network architectures 
to interpret, model, or extract meaningful informa-
tion from spectral data, such as those obtained from 
techniques including mass spectrometry, nuclear 
magnetic resonance, infrared spectroscopy, Raman 
spectroscopy, and ultraviolet–visible spectroscopy.

diffusion models
Generative models used primarily for image genera-
tion and other computer vision tasks. Diffusion-based 
neural networks are trained through deep learning 
to progressively “diffuse” samples with random 
noise, then reverse that diffusion process to generate 
high-quality images.

digital twin
A virtual representation or computational model 
of a physical object, system, or process designed 
to simulate real-world behaviors, interactions, and 
responses. By leveraging real-time data, advanced 
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simulations, and predictive analytics, digital twins 
allow users to monitor, analyze, optimize, and con-
trol their physical counterparts, enabling improved 
decision-making, experimentation, and forecasting in 
a controlled virtual environment.

edge algorithms
Computational methods designed for data process-
ing and analysis directly on devices or sensors near 
data generation points, minimizing latency and band-
width usage.

energy functionals
Mathematical constructs that assign a scalar energy 
value to a function or configuration of a physical 
system, typically representing the total energy (e.g., 
kinetic, potential, or free energy) as a function of 
fields, wavefunctions, or density distributions over 
space.

epigenetic
Heritable changes in gene expression that do not 
alter DNA sequences, typically involving chemi-
cal modifications like DNA methylation or histone 
modification.

exascale computing
Computation using computers capable of performing 
at least 1 exaFLOP (1018 floating point operations per 
second).

few-shot learning
A machine learning framework in which an AI model 
learns to make accurate predictions by training on a 
very small number of labeled examples.

foundation models
Deep learning models trained on vast datasets that 
can be applied across a wide range of use cases. Gen-
erative AI applications like large language models are 
common examples of foundation models.

global biogeochemical cycles
Integrated, planet-scale processes by which chemical 
elements and compounds are exchanged among 
the biosphere, atmosphere, hydrosphere, and geo-
sphere, driven by biological, geological, and chemical 
mechanisms that regulate the composition and func-
tioning of Earth’s ecosystems.

global nutrient cycles
Large-scale, biogeochemical processes that govern 
the movement, transformation, and conservation of 
essential chemical elements (e.g., carbon, nitrogen, 
phosphorus, and sulfur) through the biosphere, 
atmosphere, hydrosphere, and geosphere, enabling 
the sustained productivity and regulation of Earth’s 
ecosystems.

graph neural networks (GNNs)
Graph neural networks apply the predictive power 
of deep learning to rich data structures that depict 
objects and their relationships as points connected 
by lines in a graph.

hyperparameter optimization (HPO)
A mechanism for automatically exploring a search 
space of potential hyperparameters, building a series 
of models and comparing the models using metrics 
of interest.

in situ
Experiments or observations performed within the 
natural location or native context of a biological sys-
tem, without removing the subject from its original 
environment or disrupting its structural or spatial 
organization.

isofunctional protein families
Groups of evolutionarily related proteins that, despite 
possible sequence divergence, catalyze the same 
biochemical reaction or perform the same molecular 
function across different organisms or contexts.

latent embedding spaces
In machine learning, a compressed representation 
of data points that preserves only essential features 
that inform the input data’s underlying structure.

large language model (LLM)
A specialized type of machine learning model tailored 
for natural language processing tasks, including text 
generation. These models contain a large number 
of parameters and are typically trained using self-
supervised techniques on extensive text datasets.

long molecular representations
Structured encodings of complex biological mole-
cules (such as DNA, RNA, proteins, or metabolites) 
that capture detailed, extended information about 
their sequence, structure, modifications, or functional 
context across large spatial or informational scales.
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manifold learning
A class of unsupervised estimators that seeks to 
describe datasets as low-dimensional manifolds 
embedded in high-dimensional spaces.

mass spectrometry
An analytical technique used to measure the mass-to-
charge ratio (m/z) of ions.

metabolism
Describes how cells extract materials and energy 
from the environment and synthesize important 
byproducts.

metabolite
A small biological molecule produced by or involved 
in cellular metabolism.

metabolomics
The global profiling of small molecule metabolites in 
a biological sample (typically <1,500 daltons), provid-
ing insights into metabolic processes.

metaphenomes
Comprehensive sets of measurable phenotypic traits 
and functions expressed collectively by microbial 
communities (or other multiorganism systems) in a 
specific environment, emerging from the combined 
genetic potential (metagenomes) and environmental 
interactions of the constituent organisms.

microbiome
The collection of microorganisms (such as bacteria, 
fungi, viruses, and archaea) present in a specific envi-
ronment, such as an animal gut or soil.

model-experiment-observation (ModEx)
An iterative research approach integrating computa-
tional modeling and experimental data to accelerate 
scientific discovery and validation.

multiscale
Analysis or modeling spanning multiple spatial or 
temporal scales, such as molecular to organism or 
milliseconds to years.

multimodal
Combining different data types or sensing modalities 
(e.g., images, text, and audio) to enhance analysis, 
prediction, or understanding.

multiomics
The integrative analysis of multiple omics data types 
(e.g., genomics, proteomics, and metabolomics) for 
comprehensive biological insight.

neural networks (NN)
Information processing paradigms inspired by the 
way biological neural systems process data.

out-of-distribution scenarios
Data points that fall outside the distribution of the 
training data for a model.

parallelized deep networks
Deep learning architectures whose training or infer-
ence processes are distributed across multiple com-
putational units, such as central processing units, 
graphics processing units, or compute nodes, using 
parallel computing techniques to increase scalabil-
ity, reduce runtime, and handle large-scale data or 
model sizes.

phenotyping
Process of observing, measuring, and analyzing an 
organism’s traits or characteristics.

physics-informed AI/ML
AI/ML that seamlessly integrates data and mathe-
matical physics models, even in partially understood, 
uncertain, and high-dimensional contexts.

probabilistic formulations
Mathematical framework in which phenomena, 
models, or hypotheses are expressed in terms of 
probability theory, enabling the representation of 
uncertainty, variability, and incomplete information 
through probability distributions over possible out-
comes or parameters.

probabilistic inference
The process of calculating the conditional probability 
of a variable having a certain value, given specific evi-
dence about other variables in a probabilistic model.

proteomics
The large-scale study of proteins, including their 
structures, functions, and interactions, within cells or 
organisms.
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rhizosphere
Region of soil impacted by the presence of plant roots.

strong scaling
The efficiency of solving a fixed total program size or 
workload size with increasing numbers of workers.

surrogate representations
Simplified approximations of more complex, higher-
order models. They are generally used to map input 
data to outputs when the actual relationship between 
the two is unknown or computationally expensive to 
evaluate.

threading
Small units of a computer program that can run inde-
pendently, allowing the program to perform multiple 
tasks at the same time.

transcriptomics
The study of the complete set of RNA transcripts pro-
duced by the genome, providing insights into gene 
expression and regulation.

UniProt Knowledgebase/Swiss-Prot
A database providing high-quality, nonredundant 
protein sequence records with expert-reviewed func-
tional annotations, including information on protein 
function, domain structure, post-translational modi-
fications, variants, and protein–protein interactions. 
Swiss-Prot is a manually curated subsection of Uni-
ProtKB, comprised primarily of proteins with experi-
mentally validated functions.

vectorization
A technique used to improve the performance of 
operations on data, especially large datasets, by pro-
cessing multiple data points simultaneously using a 
single instruction, often reducing the use of for/while 
loops.

vision transformers (ViTs)
A transformer-like model that handles images for 
vision processing tasks.
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Acronyms and Abbreviations
Appendix E

AI 		 artificial intelligence

ALCF	� Argonne Leadership Computing 
Facility

API 	 application programming interface

ASCR	� Advanced Scientific Computing 		
Research program

AUPR 	� area under the precision-recall 
curve

AUROC 	� area under the receiver operating 
characteristic curve

BER 	� Biological and Environmental 
Research program

CASP	� critical assessment of structure 
prediction

DOE 	 U.S. Department of Energy

EMSL 	� Environmental Molecular Sciences 
Laboratory

FAIR  	� findable, accessible, interoperable, 
reusable

FAPM  	� Functional Annotation of Proteins 
using Multimodal models

GPU 	 graphics processing unit

HPC 	 high-performance computing

JGI 	 DOE Joint Genome Institute

KBase 	� DOE Systems Biology 
Knowledgebase

LLM 	 large language model

ML 	 machine learning

ModEx	 model-observation-experiment

NERSC	 �National Energy Research Scientific 
Computing Center

NMDC 	� National Microbiome Data 
Collaborative

NVBL	� National Virtual Biotechnology 
Laboratory

OLCF	� Oak Ridge Leadership Computing 
Facility

PDB 	 Protein Data Bank

PDE 	 partial differential equations

PLM 	 protein language model

PRD 	 priority research direction

RL 		 reinforcement learning

SC 		� U.S. Department of Energy Office 
of Science

SHAP	 SHapley Additive exPlanations

UMAP	� uniform manifold approximation 
and projection

V&V 	 verification and validation

ViT 	 vision transformer
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