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Executive
Summary

Artificial intelligence (AI), machine learning (ML),
and high-performance computing (HPC) are
poised to transform biological research, spurring
innovation in biotechnology and biosystems design.
This transformation will bring an explosion of new
capabilities to control the expression of genomic
information in living organisms and harness that
information to invent new biobased technologies
(Jinek et al. 2012; NASEM 2025).

A recent report by the National Security Commission
on Emerging Biotechnology states the widespread
impacts of biotechnology “are not just matters of
scientific achievement; they are questions of national
security, economic power, and global influence”
(NSCEB 2025). The U.S. Department of Energy
(DOE) national laboratories are the world’s greatest
scientific infrastructure and are uniquely positioned
to provide the resources and domain expertise needed
to usher in this new era of Al-driven biotechnology,
including creating and analyzing massive, open, and
Al-ready datasets.

To better understand the opportunities and basic
research needs at the interface of Al and biology, the
Advanced Scientific Computing Research (ASCR)
and Biological and Environmental Research (BER)
programs in the DOE Office of Science (SC) orga-
nized a workshop on Envisioning Frontiers in Al and
Computing for Biological Research (see Appendix A:
Workshop Agenda, p. 49, and Appendix B: Workshop
Attendees, p. S1). This workshop explored research

U.S. Department of Energy Office of Science

Applying the full potential of artificial intelligence,
machine learning, and computational sciences to

biological research will drive transformative discov-
eries and enable unprecedented capabilities.

intersections between BER and ASCR that will
harness the power of Al and exascale computing to
advance biotechnology.

These new technologies will unleash and empower
anew U.S. bioeconomy by (1) advancing predictive
understanding and manipulation of biological systems,
(2) enabling researchers to organize and simulate
biological processes across vast scales, and (3) facil-
itating the discovery and design of new behaviors,
mechanisms, and biological processes relevant to DOE
missions. The workshop culminated in four priority
research directions (see Fig. ES.1, p. iv) to guide future
research and development within SC programs: Mul-
timodal Data Assembly, Multiscale Biosystems Simu-
lation, AI-Enabled Drivers for Experimental Systems,
and Novel Algorithms for Genomics.

Integrating computation, experimentation, and
next-generation automated technologies is expected

to lead to the discovery and design of new biological
behaviors and mechanisms. The workshop identified
ways advanced computational methods can impact this
mission by exploring novel algorithms, multiscale and
multimodal modeling, data fusion, foundation models,

January 2026 i
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Priority Research Directions

S S

Multimodal Data Assembly
Advance novel computational
approaches for data fusion to
assemble multimodal data
from disparate sources and
link biological processes from
molecules to the functional
traits of organisms.

Multiscale Biosystems
Simulation

Develop mechanistically
grounded, mathematically
rigorous predictive models
that represent biological
processes across a range of
scales from controlled
laboratory settings to
complex natural
environments and from
molecular- to field-level
dynamics.

@ Al-Enabled Drivers for

—

Novel Algorithms

for Genomics

Develop algorithms to detect
patterns in gene and genome

Experimental Systems
Establish Al-enabled drivers
for experimental systems as

tools to understand and organization within and across
explore de novo design of species to predict phenotypic
biomolecules, metabolic plasticity.

pathways, and metabolic
networks to extend the limits
of nature's biochemical
repertoire.

Fig. ES.1. Priority Research Directions. Workshop participants identified four priority research directions at the intersection
of biology and Al to advance DOE missions and the U.S. bioeconomy.

digital twins, verification and validation, experiment
design, and automated laboratories.

Participants assessed the current state, trends, and

Al challenges at the interface of biology and compu-
tational science to identify new high-impact research
opportunities with significant potential economic and
environmental benefits.

January 2026

Progress can be made by capitalizing on the profound
computational capabilities spearheaded through
ASCR investments in exascale architectures, HPC
platforms, mathematics and computer science, and the
wealth of BER-supported efforts to collect and analyze
complex biological data at a scale unmatched by any
other government or academic entity.

U.S. Department of Energy Office of Science



Chapter 1
Background

Within DOE, ASCR has led the development of new
artificial intelligence (AI), applied math, and com-
puter science capabilities, and has pioneered exascale
computing architectures and the application of these
groundbreaking machines across a host of scientific
applications. The Argonne Leadership Computing
Facility (ALCF), Oak Ridge Leadership Computing
Facility (OLCF), and the National Energy Research
Scientific Computing Center (NERSC) have been at
the forefront of using high-performance computing
(HPC) to tackle some of the most challenging scien-
tific problems facing DOE'’s energy mission.

BER is aleader in large-scale biological data generation
and cutting-edge research designed to understand the
mechanisms and processes underlying complex biologi-
cal phenomena, with biotechnology innovation as a pri-
mary goal. The program supports crosscutting synthesis
across biological fields as well as user facilities and sci-
entific resources that extract, organize, and classify bio-
logical data. These facilities and capabilities include the
DOE Joint Genome Institute, Environmental Molecular
Sciences Laboratory, DOE Systems Biology Knowl-
edgebase (KBase), National Microbiome Data Collab-
orative, and structural biology and imaging resources at
DOE light and neutron facilities across the country.

Al offers a unique and powerful opportunity to merge
these two worlds. Advanced computer architectures
operating at unprecedented scales and speeds, coupled
with carefully designed new mathematical algorithms,
can assemble and analyze vast biological data to extract
meaning, reveal new insights, and autonomously guide
experiments to both efficiently target knowledge gaps

U.S. Department of Energy Office of Science

Supplemental
Materials

Prior to the workshop, attendees were invited
to submit position papers discussing key
challenges and opportunities in formulating,
implementing, and applying Al/ML frame-

works for biological systems relevant to BER's
mission space. This community input shaped
the workshop agenda, panelist discussions,
and workshop report.

The position papers and a report overview are
available online:

* Position papers: DOI:10.2172/2512398
* Overview brochure: DOI:10.2172/2566160

and home in on potentially groundbreaking processes
and mechanisms (see Fig. 1.1, p. 2). Embedding deep
biological knowledge into these algorithms will ensure
computation provides scientifically relevant and mean-
ingful results that power new, more accurate predic-
tions and improve biosystems design. By integrating
computation, experimentation, and next-generation
technologies, researchers aim to simulate and manipu-
late biological systems across scales.

The Envisioning Frontiers in Al and Computing for
Biological Research workshop hosted by ASCR and
BER assessed current trends and challenges at the inter-
section of biology and Al (see sidebar, Supplemental
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Fig. 1.1. Building a Legacy of Biological Research. In the last 50 years, researchers across the BER portfolio have made
groundbreaking discoveries with everyday applications, facilitating the scientific revolutions that have powered U.S. leader-

ship in biology.

Materials, p. 1). The workshop identified four trans-
formative priority research directions (PRDs) that
leverage ASCR’s computational expertise and BER’s
leadership in biological systems research to advance
DOE missions and the U.S. bioeconomy. Ch. 2 (see

p- 11) describes the PRDs; Ch. 3 (see p. 25) discusses
shared themes around data generation; Ch. 4 (see

p. 29) discusses crosscutting focus areas for Al includ-
ing novel algorithms, multiscale multimodal modeling,
data fusion, foundation models, digital twins, Al ver-
ification and validation, experiment design, and auto-
mated laboratories (see Fig 1.2, p. 3).

1.1 Overview of Computation
and Mathematics

Capabilities in DOE

For over 70 years, DOE and its predecessors have led
the nation’s development and application of advanced

January 2026

mathematics and computer science research to address
the world’s most formidable scientific challenges
(ASCAC 2020). This work has pioneered advanced
computational techniques in optimization and core
mathematics, including differential equations, linear
algebra, discrete mathematics and graph theory, as well
as core computer science areas (i.e., massively parallel
processing, scalable input/output, large-scale data
analysis and visualization, and network protocols).
Taken together, DOE research, technical advances,
and leadership have produced groundbreaking results
in various fields, including fluid and solid mechanics,
materials sciences, computational chemistry, and bio-
logical modeling.

In 2023, the facilities subcommittee for the Advanced
Scientific Computing Advisory Committee (ASCAC)
was charged with assessing the necessity for new or
upgraded facilities to ensure the Office of Science

U.S. Department of Energy Office of Science
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Focus Areas That Cut Across the Priority Research Directions

Novel Algorithms and
Uncertainty Quantification
Develop advanced mathematical,
statistical, and Al-based
methods—including uncertainty
quantification—to rigorously explore
complex biological data and improve
the reliability of predictive models.

Novel
Algorithms

\ Digital Twins

Develop dynamic virtual models of
biological systems that support

-0 imulation, optimization, and real-time
Digital simutation, '
9 experimental feedback to accelerate

Twins discovery and design.

Multiscale, Multimodal Modeling
Integrate diverse data types (e.g.,

genomics, proteomics, imaging) with Multiscale, Verification and Validation

Mmodels spanning molecular to ecosystem i \ Embed rigorous verification and validation
sc.ales,.creating dnifesfamenorkstor M,;: It:'ml?dal practices%nto Al-integrated biological
:blologlcal fesearch St research workflows to communicate
Verification model limitations, quantify prediction
and Validation confidence, and enhance robustness and

reproducibility.

Data Fusion
Combine and standardize diverse

data from experimental,
observational, and simulated sources Data
to enable interoperable and Fusion o \
Icomprehensive analysis. \\ Experiment Design
' . \ Use Al-quided approaches and
ExPe"me“t " human-Al collaboration to optimize
Design experiments, enhance data collection,
and accelerate discovery.

Foundation Models

Create versatile, general-purpose

Al' models for biology to generate
hypotheses, analyze massive
multimodal datasets, and accelerate
fundamental discoveries.

\

Foundation
Models . \ Automated Laboratories

Leverage Al-driven decision-making
for autonomous, high-throughput
Automated experimentation, enabling
Laboratories large-scale exploration and design of
biological systems.

//

*Colored bands indicate the relevant PRDs each area supports

\ PRD 4
A
Multimodal Multiscale Biosystems Al-Enabled Drivers for Novel Algorithms
Data Assembly Simulation Experimental Systems for Genomics

Fig. 1.2. Crosscutting Focus Areas. Workshop participants identified eight key focus areas spanning the priority research
directions (PRD). These focus areas represent strategic opportunities for collaboration across ASCR and BER.

U.S. Department of Energy Office of Science January 2026
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(SC) remains at the forefront of scientific discovery.
The resulting report emphasized that ASCR systems
are essential for maintaining this leadership, especially
as science becomes increasingly interdisciplinary,
integrated, and digital (ASCAC 2024). These facili-
ties enable complex and diverse workloads running
on petaflops and exascale supercomputers, many
with hundreds of thousands of cores and hundreds of
gigabytes of graphics processing unit (GPU) mem-
ory. As several DOE science programs produce large
amounts of data, ASCR facilities are best utilized as a
large, integrated ecosystem supporting SC programs
alongside other ASCR efforts in software, algorithms,
workforce, and science application components
(ASCAC 2024).

Recent breakthroughs in DOE-based mathematics
and computer science (U.S. DOE 2023a) have been
instrumental in advancing Al across science and engi-
neering. These innovations are ready to deliver reli-
able Al methodologies that will deepen fundamental
understanding of biological processes. However, the
complex, multiscale nature of biological dynamics is
difficult to bridge. In addition, the underlying dynamic
equations are unknown. Crosscutting, interdisciplinary
Al research offers a unique opportunity to overcome
these challenges by coupling experimental measure-
ments directly with data from simulations and data-
driven models.

1.2 Application Targets
Within Al for Biology

ASCR is developing advanced exascale compute
infrastructure, new algorithms, new data paradigms,
and mathematical abstractions. These capabilities—
particularly in Al—can address numerous challenges,
knowledge gaps, and bottlenecks impacting BER’s mis-
sion of advancing understanding of complex multiscale
biological systems and their interactions. Discussions
of these capabilities built on previous workshops

held by ASCR and BER that explored how Al can
advance biology research (see sidebar, Insights from
Previous DOE Workshops on Al and Biology, p. ).
Critically, Al can improve the efficiency and efficacy
of the laboratory and field experiments that feed Al

January 2026

analyses—creating a beneficial feedback loop to rap-
idly address key challenges.

Workshop participants identified five target areas

in which AT could accelerate biological insights:

(1) functional genomics; (2) metabolic engineering
and synthetic biology; (3) microbiome analysis and
engineering; (4) ecosystems analysis, prediction, and
manipulation; and ($) data integration and knowledge
representation.

Functional Genomics

Determining and manipulating protein function is a
fundamental activity in biology, providing insights
into the capabilities and design of protein molecules
that act as sensors, motors, and biochemical catalysts.
Accurate annotation requires solutions to many sig-
nificant challenges the biological research community
faces today (Liu et al. 2025), including (1) ensuring
that functional annotations are accurately propagated
across isofunctional protein families; (2) correcting
numerous errors in functional assignments in existing
databases; (3) discovering completely novel functions
that have not yet been characterized by molecular biol-
ogists or biochemists; and (4) considering biological
context during annotation, since functions vary with
context. Al tools, particularly agents and foundation
models, either trained or fine-tuned using exascale
machines, could help to determine the combination of
techniques and evidence that can be used to properly

annotate proteins.

Understanding metabolic processes, particularly in
plants and microbes, is also central to DOE missions
in biology, including understanding biologically medi-
ated chemical transformations and harnessing biology
for the bioeconomy. However, detailed insights into
gene and protein function are lacking, along with

the ability to identify most metabolites and their
intricate biological roles. Integrating computational
approaches—such as deep learning—based spectral
analysis, graph neural networks for metabolite interac-
tion prediction, and probabilistic inference methods—
can significantly enhance metabolite identification
accuracy, deepen functional annotation, and enable
more effective manipulation of metabolic processes.

U.S. Department of Energy Office of Science



Insights from Previous DOE
Workshops on Al and Biology

Previous workshops held by ASCR and BER have explored how Al can advance biological research. This workshop

builds upon insights from those efforts. In addition, a report led by the DOE national laboratories—Advanced
Research Directions on Al for Science, Energy, and Security (U.S. DOE 2023a)—lays out a long-term vision for Al across

DOE.

2019

Workshop Report on Basic Research Needs
for Scientific Machine Learning: Core
Technologies for Artificial Intelligence

U.S. DOE 2019
Organizer: ASCR

Priority Research Directions

® Integrate domain knowledge to improve accuracy
and reduce data needs.

Develop methods to interpret complex models and
quantify model differences.

Ensure methods are robust and reliable.

Handle large-scale, noisy, and uncertain
data effectively.

Integrate Al into simulation codes to improve
performance and robustness.

Address challenges in simulation-based decisions,
such as efficient exploration, data combination, and
human-automation interaction.

2023

Artificial Intelligence and Machine
Learning for Bioenergy Research:
Opportunities and Challenges

U.S. DOE 2023b

Organizers: BER and the DOE Bioenergy Technologies
Office

Opportunities

® Accelerate discovery with Al to analyze vast data-
sets to identify patterns and trends, leading to
faster breakthroughs.

® Optimize bioprocesses through automated exper-
imentation and Al-driven approaches to increase
efficiency and yield.

® Engineer microorganisms with Al to design
microbes with specific functions, such as producing
biofuels or breaking down pollutants.

Challenges

® Address gaps in high-quality data, robust Al tools,
and a skilled workforce by significantly investing

in research and development and strengthening
collaborations among academia, industry, and
government agencies.

2024
Artificial Intelligence for the Methane Cycle
U.S. DOE 2024

Organizer: BER's Environmental System Science

program

Opportunities

® Enhance the understanding and prediction of

methane fluxes across various scales (from micro-
bial populations to global systems) by improving
data collection and integration and enhancing
model design and accuracy.

Bridge gaps between top-down and bottom-up
methane flux estimates by developing comprehen-
sive datasets and innovative modeling techniques
and through infrastructure investment.

2024

A Unified Data Infrastructure for
Biological and Environmental Research

BERAC 2024
Organizer: BER Advisory Committee

Goal: Review BER's existing data infrastructure and
recommend a strategy for next-generation data
management.

Recommendations

® Ensure infrastructure developers engage with the
research community during the design and devel-
opment process.

Target high-impact science goals early to empower
early adopters who can lead the charge on testing
and leveraging the infrastructure.

Use existing BER and ASCR resources as much as
possible so new tools can focus on integration.

Encourage use of new computer science methods
(e.g., Al) through dedicated training, validation, and
verification frameworks.

]
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Metabolic Engineering

and Synthetic Biology

Once functions for proteins and molecules are
unveiled, it is possible to rationally re-engineer and
modulate those functions to harness and optimize
biological systems for bioenergy production and

to develop solutions that address energy and crop-
resilience challenges (Wu et al. 2025). This requires

a deep mechanistic understanding of how a protein’s
sequence impacts its function. Al has already been
revolutionary in this space by massively advancing the
protein folding challenge with AlphaFold (Abramson
etal. 2024), but much work remains. Emerging pro-
tein language model-based approaches also show
promising progress in this area (Zvyagin et al. 2023).
Furthermore, this metabolic engineering must be
accomplished in a manner that supports continuous
uploads of and updates to new datasets and ongoing
improvements in analysis and understanding of exist-
ing datasets.

By combining imaging produced by DOE’s world-
leading high-energy light sources with protein struc-
ture data and mechanistic modeling approaches across
scales, BER can unleash the potential to design not just
individual proteins, but whole pathways, whole organ-
isms, or even complex plant and fungal systems. This
challenge requires a holistic understanding of these
organisms at the mechanistic level, as well as knowl-
edge of thermodynamic and kinetic parameters. If
these research efforts are aligned with ASCR strategies,
[e.g., accelerating hyperparameter optimization by
using a fraction of a training dataset (Yu et al. 2024)],
they could aid in (1) making whole-cell simulations
more scalable, (2) predicting parameters, (3) correct-
ing gaps in models, and (4) predicting modifications
needed to achieve desired phenotypes.

Microbiome Analysis and Engineering
BER’s mission also requires an understanding of how
microbiome systems function, how they are connected
to growth conditions, and how they respond to per-
turbations and manipulations, including individual
organism behavior, interspecies interactions, and inter-
actions with the environment (Knight et al. 2024). An

January 2026

additional challenge stems from the realization that
many organisms in these systems cannot be isolated,
and so even their genomic capabilities are uncertain.
Knowledge of these systems can facilitate microbiome
engineering, which will enable the optimization of
individual microbes for particular steps in complex
metabolic processes. If Al can operate in concert with
microbiome modeling systems, digital twins, and cross-
scale frameworks to predict interactions and behavior
and fill in missing information in incomplete genomes,
microbiome design will be enabled. Al can also greatly
facilitate efforts to isolate currently unculturable
microbes. These Al systems will need to operate across
multiple scales and data modalities given the size and
complexity of most microbiome systems of interest.

Ecosystems Analysis, Prediction,
and Manipulation

Beyond the microbiome level, the BER mission
involves the study of a wide range of natural systems.
Of particular interest are soils, which represent one

of the most complex biological systems and are crit-
ical to the bioeconomy, crop resilience, and under-
standing ecosystem response to a range of conditions
(Knight et al. 2024). Despite over 100 years of study,
significant knowledge gaps remain concerning the
molecular-scale mechanisms that drive organismal and
interkingdom interactions and how these processes
scale to shape ecosystem-level dynamics and responses
to extreme weather (Jansson and Hofmockel 2020),
highlighting the tremendous complexity and multidis-
ciplinary challenges that must be overcome to under-
stand soil systems.

Rapidly advancing a causal and mechanistic under-
standing of soil systems will require the integration of
diverse datasets, including multidomain omics analy-
ses, abiotic controls, and plant communities, all within
a 3D environment with physical limitations on flow
and gas exchange. Tracking the associated spatial and
temporal dynamics requires concerted analysis by lab-
oratory, field, and computational scientists. Multiscale,
multimodal data integration can benefit from compu-
tational models capable of analyzing physicochemical
and biological processes through the fusion of diverse
analytical modalities, such as multiomics and sensor

U.S. Department of Energy Office of Science
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Fig. 1.3. Integrative Systems Biology. Understanding biological systems across scales of observation and complexity, from
molecules to ecosystems, is a central challenge within BER that must be solved to discover the factors influencing function

and processes within biological and environmental systems.

data. Leveraging ASCR’s advanced computational
tools can systematically address extensive laboratory
and field datasets, enabling rigorous hypothesis gen-
eration (Mukhtar et al. 2022). These tools, such as
accurate multiscale direct mathematical solvers for
complex heterogeneous systems, are relevant across
wide biological scales (see Fig. 1.3, this page) and can
be coupled with domain-informed Al and parallelized
deep networks optimized for exascale architectures.
Using exascale machines, it is possible to train deep
learning approaches from scratch, a method that could
be used to scrutinize existing scientific understanding,
quantify uncertainty, and identify knowledge gaps to
improve models and their predictions.

Data Integration and

Knowledge Representation

Data integration and knowledge representation form
the foundation upon which all other biological under-
standing and discovery rest. The capacity to capture
and synthesize data at scale, and to associate that data
as evidence for consistently and accurately represented

U.S. Department of Energy Office of Science

biological knowledge, is paramount to advancing biol-
ogy as a science.

DOE is mobilizing its national laboratories to partner
with industry, leveraging its unique role as a data gen-
erator (One Big Beautiful Bill Act 2025)—particularly
through its user facilities—to curate and preprocess
high-quality, Al-ready scientific data, which will then
be made accessible to the research community along
with specialized Al models via the American Science
Cloud, a dedicated platform for scientific research,
data sharing, and computational analysis.

Multiomics data from plants and microbes relevant

to DOE now exist for billions of genes, vast numbers
of biochemical molecules, millions of genomes, and
hundreds of thousands of samples with inconsistent
metadata, IDs, and analytical protocols (Anderson
etal. 2025). Additionally, numerous competing
ontologies represent knowledge of protein functions,
metabolites, environments, cell types, and biological
phenomena, with incomplete mapping to associated
molecular representations (e.g., metabolites, reactions,
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and macromolecules). Al can aid in reconciling and
mapping ontologies to one another and in proposing
relevant molecular representations. Advanced mathe-
matics will be instrumental in multimodal registration
of differing imaging modalities and in identifying
missing or redundant representations. Exascale-aware
libraries can also help address needs for latency hiding,
improved vectorization, threading, and strong scaling
in tasks involving comparison between long molecular
representations (ECP 2025).

While outside the scope of this workshop, data man-
agement is essential to biology. Al can benefit efforts to
integrate and reconcile sample metadata; map, query,
and interpret data; and prioritize data acquisition.
ASCR’s report on Management and Storage of Scientific
Data describes the benefit of data management to
DOE research (U.S. DOE 2022a).

1.3 Al-Enabled Success
Stories in Biology

Al-driven tools support the modeling of complex bio-
logical systems such as virtual cells, allowing scientists
to simulate and study cellular processes in unprece-
dented detail. By combining computational power
with biological insights, researchers can achieve more
efficient and effective outcomes, driving innovation
and addressing pressing global issues in health, energy,
and the environment.

Protein Folding

One of the greatest recent successes of Al in biology
was the development of AlphaFold and RoseITAFold
(Baek et al. 2021; Jumper et al. 2021), which led to a
Nobel Prize in 2024 (see sidebar, DOE Powers Discov-

ery, p.9).

Although protein folding is one of the most complex
challenges in biology, it became a target application
and early success because of numerous advantages.
First, all experimental protein structure data were
aggregated, mapped, annotated, curated, and neatly
organized in a single public repository, the Protein
Data Bank (PDB; Burley 2025). The data were never
cross-contaminated with computational predictions
but were stably stored in a single public location for
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For definitions of "threading" and
other discipline-specific terms found

throughout the report, see Appendix C:
Glossary, p. 53.

decades. The PDB facilitated the identification of
promising, varied targets for novel structure deter-
mination, which significantly contributed to protein
structure discovery. Second, Critical Assessment of
Structure Prediction (CASP) contests led to the cre-
ation of objective benchmarks against which folding
prediction tools could be tested, and these contests
also inspired rich competitions from tool builders
(Kryshtafovych et al. 2023). CASP events also led

to the standardized development and deployment of
folding tools, paving the way for the development of
hybrid combinations of approaches (e.g., machine
learning and molecular dynamics). These approaches
provided insights into generalized features of the
protein structure problem that were instrumental in
creating successful Al solutions (e.g., conserved folds
and conserved links between sequence, structure,

and function). Third, protein folding benefited from
the massive amount of highly interrelated protein
sequence data that provided an evolutionary context
to the folding problem. Lastly, protein folding and sim-
ulation efforts have always been at the forefront of the
application of ASCR’s HPC platforms to biology. Pro-
tein simulation efforts are one of the driving problems
motivating the use of exascale platforms for biology.

Molecular-Scale Techniques

MetaHipMer is another example of successful collab-
oration between computer scientists, biologists, and
HPC. This computational tool efficiently assembles
DNA sequences from complex microbial commu-
nities using a GPU-accelerated implementation to
address challenges in metagenome assembly, including
irregular memory access patterns and the need for
dynamic data structures, by leveraging GPU optimiza-
tion techniques and memory management strategies
(Awan et al. 2021). MetaHipMer2 shows significant
overall performance improvement, as tested on DOE’s

U.S. Department of Energy Office of Science
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DOE Powers Discovery: An Al Success Story

University of Washington biochemist and compu-
tational biologist Dr. David Baker, along with two
colleagues, was awarded the 2024 Nobel Prize

in Chemistry for his pioneering work in compu-
tational protein design using diffusion models,

a breakthrough event that has accelerated the
entire field of protein engineering and design

of novel biomolecules not found in nature. The
Nobel-winning research was performed using
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DOE's high-performance computing resources at
the National Energy Research Scientific Comput-
ing Center. This landmark achievement exempli-
fies how Al-driven approaches, enabled by DOE
supercomputing, have advanced computational
protein design and protein structure prediction,
leading to innovative applications in biotechnol-
ogy, biomanufacturing, energy, agriculture, and
medicine.

Diffusion models can generate new protein backbones, geometries, and sequences that were not
included in the datasets used for training such models. [Reprinted under a Creative Commons Attribution
4.0 International License (CC BY 4.0) from Watson, J. L., et al. 2023. "De novo Design of Protein Structure
and Function with RFdiffusion," Nature 620, 1089-100. DOI:10.1038/541586-023-06415-8.]

Summit supercomputer. This work highlights signif-
icant progress toward adapting metagenomic work-
flows to GPU-dominated exascale computing systems.

AT has also had a profound impact on instrumentation
in biology (e.g., in mass spectrometry). Mass spec-
trometry metabolomics provides direct biochemical
measures of biological processes and is often used to
provide a functional complement to DNA sequencing.
Al methods are already proving powerful in extracting
additional information from these high-dimensional
datasets to improve the currently small fraction of
metabolites that can be identified in a metabolomics
experiment. One recent example of this is BUDDY, a

U.S. Department of Energy Office of Science

software tool that is able to accurately determine molec-
ular formulas for metabolites through bottom-up inter-
rogation of mass spectrometry data (Xing et al. 2023).

Other DOE Efforts

The collaboration between DOE and the National
Cancer Institute (NCI) to advance precision oncology
and scientific computing is another success story for
Al-enabled biology. This effort resulted in the devel-
opment of new scalable deep learning algorithms
operating on DOE exascale platforms, which catalyzed
computational drug discovery for cancer therapeutics
(e.g., Lawrence Livermore National Laboratory-
BridgeBio partnership). Collaborators also released
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datasets and new Al models that are now heavily used
by the cancer research community.

DOE’s contributions to the BRAIN Initiative (Brain
Research through Advancing Innovative Neurotech-
nologies) have accelerated the pace of innovation in
neuroscience, data integration, and cross-disciplinary
collaboration. The BRAIN Initiative, which is a public—
private partnership, supports the development of novel
neurotechnologies and tools for monitoring brain
function, including dynamic imaging.

During the COVID-19 pandemic, DOE established
the National Virtual Biotechnology Laboratory

January 2026

(NVBL), a consortium leveraging Al and computa-
tional models. NVBL significantly contributed to the
pandemic response by developing exascale-aware tools
such as epidemiological models, simulations, and new
testing protocols (Clyde et al. 2021; U.S. DOE 2022b).
AT has also been instrumental in accelerating drug
discovery processes, which enable rapid discovery and
optimization of new materials. These collaborations
demonstrate the power of Al and cross-disciplinary
efforts in driving scientific breakthroughs.
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Chapter 2
Priority Research Directions

The Envisioning Frontiers in Al and Computing for Generation for Al p. 25) and (2) crosscutting Al algo-
Biological Research workshop identified four priority rithms, methods, and models (see Ch. 4: Crosscutting
research directions (PRDs) representing critical sci- Approaches, p. 29).

entific areas for applying and advancing Al in biolog-

Workshop participants discussed the reasoning behind
ical research (see Table 2.1, this page). These PRDs,

each PRD, detailed the impact it can have on biological

while presented as distinct thrusts, are inherently research, defined the key science questions it could
interconnected, and all share two significant themes: answer, and identified target activities (i.e., ideal strate-
the need for (1) for data generation (see Ch. 3: Data gies for the execution of the PRD).

Table 2.1. Crosscutting Tasks and Challenges Associated with Proposed Priority Research Directions

Priority Research Example Corresponding Computer
Direction Biological Task Science/Math Challenge
PRD 1 Integrate imaging, omics, and text metadata Exascale-scalable manifold alignment and
Multimodal to discover determinants of function and optimal-transport fusion with uncertainty
Data Assembly novel pathways quantification

Multigrid partial differential equation

PRD 2

Multiscale Biosvstems Predict plant-soil-microbe interactions and solvers, surrogate molecular dynamics and

Simulation y phenotypes over time and space ordinary differential equation models, and
adaptive mesh refinement

PRD 3 Design enzymes, pathways, and microbi- Novel, scalable optimization strategies and

Al-Enabled Drivers for omes de novo to manipulate expressed algorithms and reinforcement learning

Experimental Systems phenotypes controllers

PRD 4 Beyond attention-based transformers;

i Detect regulatory motifs and community |
Novel Algorithms graph neural networks, transfer learning,
network modules

for Genomics and uncertainty quantification

U.S. Department of Energy Office of Science January 2026
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2.1 Multimodal Data Assembly

PRD 1: Advance novel computational
approaches for data fusion to assemble
multimodal data from disparate sources and
link biological processes from molecules to
the functional traits of organisms.

Rationale (Challenges and Opportunities)
Biological data are typically sparse, noisy, uncertain,
and often lack standardization. Further, knowledge

of the molecular mechanisms and even fundamental
principles governing the behavior of most systems is
incomplete and often fragmented. Fundamental lim-
itations in measurement strategies make interrogating
molecular entities within even model systems and
diverse conditions challenging. To address and over-
come these challenges, exascale computing for reason-
ing models, data fusion, optimal experimental design
strategies, and verification approaches are needed,
along with new integrative experimental, computa-
tional, and theoretical strategies informed by advances
in AT foundation models. These strategies will require
broad advances in automated laboratories and digital
twins that enable reasoning models with experimental
teedback to accelerate the generation of multiscale bio-

logical datasets.

Key Questions

®  What computational approaches can be developed
to fuse complex biological data (e.g., imaging,
omics, abiotic conditions, and natural language
text) to enable the discovery of new biological
behaviors, mechanisms, and design principles,
while simultaneously addressing data interoper-
ability, noise, standardization, and uncertainty

quantification?

* How can these approaches best leverage emerg-
ing data integration infrastructures like the BER
Data Lakehouse and the ASCR American Science
Cloud, and how can this infrastructure best serve
data fusion needs?

January 2026

Impact

Multimodal data assembly approaches will improve
the capacity to integrate and synthesize extensive col-
lections of existing biological data and to use existing
data to rapidly contextualize new data as it is gener-
ated. This will improve both experimental design and
the quality and value of data generated, enhancing que-
ries across resources and the effectiveness of all ongo-
ing biological research programs. These capabilities
can support a wide range of DOE-relevant challenges
in biotechnology innovation, bioenergy, biomaterials,
and phytomining, including:

* Integrating omics and geochemical data to under-
stand microbial community responses to abiotic
stressors across diverse soil and plant systems

* Modeling drought-induced shifts in root exudate
chemistry

* Understanding rhizosphere microbiome dynamics

* Developing advanced biodesign concepts to engi-
neer molecules, microbes, plants, and microbial
communities to extract and recover critical miner-
als and materials (CMM) with enhanced selectivity
from natural and complex environments

Target Activities

Improve Experimental Strategies and Data Stan-
dardization. Many areas of DOE interest lack datasets
of sufficient size to support deep Al analysis, par-
ticularly for critical conditional data on cellular and
molecular dynamics, physiology, fitness, and activity
in diverse relevant conditions. Implementing strategic
experimental design and replicable data acquisition
roadmaps is essential for producing high-quality, stan-
dardized datasets that comply with FAIR principles
(Findable, Accessible, Interoperable, and Reusable;
Wilkinson et al. 2016, 2019). These datasets are
needed to create robust multimodal biological models
(see Ch. 3: Data Generation for A p. 25). Impor-
tantly, this strategy should leverage DOEF’s existing
strengths in data generation, such as extensive genomic
sequence libraries and macromolecular structure
datasets (Berman et al. 2000; Arkin et al. 2018) while
addressing critical gaps in contextual information

U.S. Department of Energy Office of Science



(e.g., conditional data on cellular physiology and
dynamics under diverse conditions, along with more
complete metadata).

Al approaches can partially compensate for sparse or
lower-quality data, but their greater promise lies in
guiding data acquisition itself. For example, within an
active learning framework (Lookman et al. 2019), AI
models could identify high-value knowledge gaps and
suggest targeted new experiments or measurements
(e.g., adding specific controls, internal standards, or
undersampled conditions) that would most improve
predictive accuracy or reduce model uncertainty. By
tightly integrating exascale computing for Al guidance
with improved data standards, a feedback loop can be
established in which better data leads to better models,
and those models in turn inform more strategic exper-
iments to advance progress toward a more predictive,
cross-scale understanding of complex biological sys-
tems in line with DOE’s mission.

Develop Scalable Methods To Manage Data Uncer-
tainty and Sparsity. Advancing robust uncertainty
quantification requires developing theoretically
grounded and scalable methods specifically engi-
neered to handle the sparsity and high dimension-
ality inherent in biological datasets. These methods
should be capable of generating statistically rigorous
confidence intervals that accurately reflect prediction
reliability across complex molecular interactions. To
ensure data integrity prior to downstream analysis, it
is vital to establish automated data quality assessment
architectures that implement sophisticated statistical
approaches to detect, characterize, and remediate
experimental artifacts and systematic biases inherent
in multiomics datasets.

Innovations are needed in ensemble methodologies
that integrate predictions from diverse modeling par-
adigms [e.g., physics-based simulations (Abramson
etal. 2024), deep learning architectures (Ballard et

al. 2024), multiplex network learning (Sullivan et al.
2024), and knowledge-driven approaches (Li et al.
2024)]. Ensemble methodologies should incorporate
principled uncertainty propagation to enhance the
robustness and reliability of gene function predictions.
Furthermore, developing advanced transfer learning

U.S. Department of Energy Office of Science
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frameworks is essential to quantitatively characterize
domain shifts when transposing models across phy-
logenetically diverse species or variable conditions,
enabling precise evaluation of model generalizabil-
ity boundaries and facilitating targeted refinement
through domain adaptation techniques that preserve
biological relevance. These methodological advances
collectively establish a mathematical foundation for
confidence-aware biological discovery systems that
rigorously account for uncertainty throughout the ana-
lytical pipeline. If such approaches were implemented
in computational platforms like the DOE Systems
Biology Knowledgebase (KBase) or the National
Microbiome Data Collaborative (NMDC), these
services could provide researchers with a detailed
understanding of how gene annotations, microbial
traits, or insights from samples propagate among sim-
ilar entities, or quantify confidence in these types of
inferences.

Improve Capacity To Investigate Sources of Data
Variability and Noise Amid Data Scarcity. One of
the great challenges associated with integrating biolog-
ical data from disparate sources is understanding the
causes of variation across datasets. Replicates within

a single laboratory are often extremely similar, while
replicates across laboratories display greater variability;
therefore, understanding and reducing interexperi-
mental and interlaboratory variability is critical to data
assembly (Novak et al. 2025). Al methods employ-
ing statistical anomaly detection, domain-adaptive
learning, and Bayesian uncertainty quantification can
mitigate this variability by systematically identifying
which types of biological data are most susceptible to
discrepancies caused by different laboratory protocols.
Given the inherent scarcity, variability, and noise in
biological data, robust computational methods (e.g,,
tensor-based imputation, sparse representation learn-
ing, graph-based denoising algorithms, and probabi-
listic generative modeling) are needed for training and
inference from incomplete data.

Integrate Multimodal Data To Handle Incomplete
Data. Leveraging existing multidisciplinary data,
including epigenetic, multiomic, abiotic conditions,
and phenotypic data, is required to develop models

January 2026
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Fig. 2.1. Complexity of Plant-Microbe and Microbe-Microbe Interactions in Rhizosphere Systems. (A) An example of

a mechanistic digital twin for rhizosphere systems is a community metabolic (M) or metabolic-enzyme (ME) model. These
models can capture, represent, and mechanistically explain dynamics in molecules, enzymes, and species over time, enabling
them to guide the manipulation of experimental and engineered biological systems to meet desired objectives. (B) Mechanis-
tic models of metabolism only (M-models) have three advantages: they are smaller, have fewer parameters, and are less com-
putationally intensive to run. However, these models lack the capacity to fully capture dynamics outside of metabolism (e.g.,
gene expression, regulation, and shifts in macromolecular processes). Expanding M-models to include these systems creates
ME-models, which are far more capable of representing biology comprehensively. However, ME-models are also larger, more
parameter-intensive, and more computationally costly to run. Proper model selection is crucial for optimizing digital twinning.

[Courtesy University of California-San Diego]

that improve the understanding and prediction of
functionality from molecules to systems. AI models
have the potential to analyze large and complex mul-
timodal datasets (Ushizima et al. 2021), like those for
multiomics (Yetgin 2025); identify patterns; and make
predictions about the changing behavior of dynamic
hierarchical systems. Moreover, this approach opens
new opportunities for model-informed experimen-
tal design, in which data used for multiscale analysis
(Yoon et al. 2024) both guides and is guided by mod-
els, enabling rapid iterative learning. Computational
tools and models capable of effectively integrating
sparse, heterogeneous, and high-dimensional data are
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critical for making accurate predictions despite incom-
plete information.

Use Deep Learning Architectures for Multimodal
Representation and Integration. Developing

new computational approaches and deep learning
architectures that can simultaneously handle hetero-
geneous data types (e.g., genomic, transcriptomic,
metabolomic, proteomic, imaging, and metadata),
particularly with sparse or incomplete multimodal data
(Argelaguet et al. 2020), is essential for an integrative
understanding of biological data. This task includes
creating models that learn unified embeddings

U.S. Department of Energy Office of Science



(Gayoso et al. 2021), provide latent space interpre-
tation to map into actionable decisions (Avsec et al.
2021), and develop techniques that are interoperable
across modalities.

Integrate Multiomic and Environmental Data
Using Physically or Biologically Informed
Machine Learning Models. Advanced research

is required to develop comprehensive digital twin
platforms that combine multiomics datasets with
environmental variables through physically or bio-
logically informed machine learning (ML) or mech-
anistic models (Karniadakis et al. 2021), enabling
predictive simulation of complex plant-microbe and
microbe-microbe interactions across spatiotemporal
scales (Corral-Acero et al. 2020; see Fig. 2.1, p. 14).
For example, a digital twin of switchgrass roots under
nutrient limitation could integrate real-time soil data,
transcriptomic feedback, and data-informed microbi-
ome interactions to optimize carbon allocation strat-

egies and inform root trait engineering (Sasse et al.
2018).

Creating advanced self-supervised learning methodolo-
gies that effectively leverage vast repositories of unlabeled
genomic data is necessary to establish fundamental rep-
resentations (Ji et al. 2021) that substantially improve
downstream prediction tasks while reducing dependence
on limited labeled datasets. Curated datasets, bench-
marks, and data pairings are needed to support contras-
tive learning and fuel these approaches (Frazer et al. 2021;
Peng et al. 2025).

Significant innovation is required to implement
meta-learning frameworks capable of rapidly devel-
oping and adapting foundation models to novel
organisms with minimal labeled data through strategic
knowledge transfer across phylogenetic boundaries
(Theodoris et al. 2023). Furthermore, agent-based
modeling approaches that establish quantitative
bridges between molecular-level mechanisms and
emergent community-level dynamics in microbial
ecosystems will be essential for connecting genomic
information to observable environmental phenomena
through principled computational abstractions.

U.S. Department of Energy Office of Science
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2.2 Multiscale Biosystems
Simulation

PRD 2: Develop mechanistically grounded,
mathematically rigorous predictive models
that represent biological processes across a
range of scales, from controlled laboratory
settings to complex natural environments and
from molecular- to field-level dynamics.

Rationale (Challenges and Opportunities)

A core challenge in building mathematically consis-
tent models that capture complex biological processes
and systems is the inherently high dimensionality of
those systems, including sparse, incomplete, and noisy
experimental observations. Connecting genome-based
molecular models with ecosystem-scale simulations
remains computationally challenging due to the vast
spatial and temporal scales involved, from nanometers
to meters and seconds to years. Al-driven approaches
such as multiresolution modeling, hierarchical neural
networks, and causal inference algorithms could link
these scales effectively (see Fig. 2.2, p. 16). Achieving
this integration requires overcoming computational
bottlenecks associated with high-dimensional simula-
tions and memory-intensive calculations, demanding
significant advancements in algorithms designed for
high-performance computing (HPC) systems. Algo-
rithmic innovations (e.g., adaptive mesh refinement
and causal learning) coupled to scale-spanning exper-
imental approaches could be integrated into novel
predictive models of biological processes to enable
more scalable computational simulations optimized
for exascale platforms.

Key Questions

® What new mathematical and computational
approaches are required to bridge genome-based
molecular models with ecosystem-scale experimen-
tal studies, ensuring consistency across biological
scales while using sparse multimodal data?

* How can Al-driven multiscale modeling be
integrated with laboratory and field ecosystems
through digital twins to enhance the accuracy,

January 2026
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Fig. 2.2. Diverse Approaches to Predictive Phenomics. Biological data used to understand systems biology traverse scales
of time, space, and complexity, ranging from milliseconds to millennia, from microns to miles, and from the molecular, cellu-
lar, and organismal levels to the ecosystem scale. Integrating this wealth of multimodal information requires data fusion and
rigorous model interpretation. Multimodal representation learning methods and Al-driven biological data integration analysis
through model pretraining, deep learning methods, and knowledge integration have the capacity to aggregate complex multi-
modal data across scales to discover new relationships currently hidden within existing complex biological datasets.

interpretability, and generalizability of biological
simulations?

Impact

Improved multiscale biological simulations will trans-
form the ability to understand and control biological
processes across scales, from genome-level molecular
interactions to large-scale systems, enabling precise
simulations and targeted interventions in bioengineer-
ing and ecosystems. By integrating Al-driven multi-
scale modeling and digital twins, researchers can
enhance predictive accuracy to optimize both labora-
tory and field experiments.

Target Activities

Integrate Cross-Scale Modeling of Biological Sys-
tems. Al methods such as multiplex network learn-
ing algorithms, multiresolution transformers, and

January 2026

reinforcement learning agents can integrate data across
scales (Silver et al. 2021), from molecular interactions
to phenotypic traits to field-level measurements (Alber
etal. 2019). These models enable the discovery of
how specific regulatory or metabolic pathways shape
whole-organism performance or influence broader
processes like soil nutrient flux, nitrogen fixation,

and microbial competition. Mechanisms identified in
model organisms, for example, can be traced across
species and contextualized within community-scale
simulations to assess how pathway rewiring affects sys-
tem stability or output. Concrete applications include
(1) predicting drought-induced carbon allocation

in switchgrass roots, (2) modeling the influence of
microbiome composition on bioenergy, biomateri-

als, or phytomining productivity, and (3) predicting
how community-level metabolic networks in micro-
bial consortia affect element cycling in soils. These
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integrated models serve as the foundation for biologi-
cally grounded digital twins (Corral-Acero et al. 2020),
guiding hypothesis generation, trait engineering, and
targeted experimentation across DOE-relevant systems.

Innovate and Implement AI-Driven Experimental
Design. New approaches that effectively quantify tar-
get molecules, pathways, and processes across scales of
biological organization will enable new insights about
the multiscale nature of systems biology. Predicting
phenotypes and metaphenomes requires a focus on
biomolecules, environmental factors, and emergent
outcomes. The dynamic nature of systems biology
calls for adaptive and iterative experimental platforms
(Shahriari et al. 2016) that quantify systems at mul-
tiple temporal and spatial scales. Generative Al can
accelerate model development (Sanchez-Lengeling
and Aspuru-Guzik 2018) to fill gaps in sparse data and
ensure imputed data are consistent with known bio-
logical constraints. Exascale computing can facilitate
analysis of high-dimensional data and update models
in response to rapidly generated experimental data. The
interactive nature of Al-model-experiment research
includes validating models with ground-truth data and
experimental perturbations (Huang et al. 2016) to test
the accuracy of predicted phenotypes (i.e., observable
traits) within dynamic biological contexts.

Develop Novel Mathematical Models To Better
Reflect the Distinctive Complexity of Biological
Systems. Collaborative computational and biological
research creates remarkable opportunities to analyze
and interpret the high-dimensional data involved in
discovering the molecular levers that drive ecosystem
functions and responses to stresses and other perturba-
tions (Brunton and Kutz 2022; Hoffmann, M. A, et al.
2022). Interpreting the function of unannotated genes,
metabolites, and proteins under a range of abiotic con-
ditions requires novel approaches that capture both
instantaneous and long-term impacts (Riesselman
etal. 2018). Computational methods that resolve com-
binatorial complexity and adapt to changing contexts
will transform understanding of biological systems.

The reciprocal nature of organismal influence on and
by the environment poses important challenges for

mathematical representations and uncertainty quan-
tification (Smith 2013). For example, plant-microbe

U.S. Department of Energy Office of Science
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interactions, soil conditions, and environmental
factors all contribute to complex, nonlinear system
behavior. However, biological systems science lacks
clearly defined equations like physics-based models,
increasing uncertainty (Karpatne et al. 2017). Bio-
logical systems often operate in a physical regime
that cannot be perfectly described by continuous
mathematical frameworks (e.g., essential molecules
with less than one copy number per cell), requiring
improved scalable algorithms that accommodate the
stochasticity inherent in these systems (Raj and van
Oudenaarden 2008). New algorithmic approaches and
diverse computational platforms will be needed for
efficient parallel processing and data handling and to
enable Al models to adapt based on multimodal data
(Avsec et al. 2021).

2.3 Al-Enabled Drivers
for Experimental Systems

PRD 3: Establish Al-enabled drivers for exper-
imental systems as tools to understand and
explore de novo design of biomolecules,
metabolic pathways, and metabolic networks
to extend the limits of nature's biochemical
repertoire.

Rationale (Challenges and Opportunities)
Biological systems have a vast capacity to produce,
manipulate, and efficiently separate numerous useful
molecules using engineered proteins, pathways, and
(multi)cellular processes. These biosystems range from
the complex ecosystems needed to produce bioenergy
feedstocks to the engineered strains used to convert
them into a wide array of valuable bioproducts. How-
ever, the development of novel biodesign solutions is
slowed by knowledge gaps in understanding complex
biological functions and their interactions across
spatiotemporal scales and environmental contexts,
compounded by the massive protein, pathway, and
bioprocess design space.

Interdisciplinary teams and cutting-edge facilities are
needed to effectively use Al to predictably harness
nature’s biochemical repertoire. In de novo design,
exascale computing will transform high-throughput
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Fig. 2.3. Design-Build-Test-Learn (DBTL) Framework. Al is placed at the core of this DBTL cycle as an intelligent driver. Al
models can propose hypotheses and guide experimental design for maximum information gain. Systems are built to chal-
lenge these hypotheses. Test strategies are Al-driven and adaptive, efficiently targeting measurement gaps. All resulting data
is assimilated into a data backbone (e.g., BER Data Lakehouse or American Science Cloud), an uncertainty-aware knowledge-
base that enables continuous model updates and systematic learning for the next iteration.

virtual screening of the massive chemical and biolog-
ical space. AT algorithms can optimize experimental
designs by controlling autonomous experiments,
identifying critical knowledge gaps, and providing
causal inferences from heterogeneous and high-dimen-
sional biological data sources across both scale and
complexity. Implementing this approach will require
close partnerships among computational scientists,
experts in applied math and computation, biologists,
and ecologists (among others), along with access to
HPC and cutting-edge biological and environmental
research facilities.

Key Questions

* How can Al-driven digital twins enhance the
design and optimization of biosystems, ensuring
accurate uncertainty quantification and robust
performance?

® How can autonomous experimentation, powered
by advanced Al algorithms, improve the design and
optimization of biosystems and enable more effi-
cient and effective discovery processes?

January 2026

Impact

Integrating Al-driven digital twins and autonomous
experimentation into biosystems design will signifi-
cantly enhance the ability to model, predict, and
optimize biological processes. This synergistic com-
bination of approaches will improve the speed and
efficacy with which new biological insights are gleaned
from experimental outputs while streamlining efforts
to design new experiments to validate discoveries.
Essentially, this work will improve the throughput and
efficiency of the scientific Design-Build-Test-Learn
(DBTL) cycle (see Fig. 2.3, this page). Standardized
and automated workflows will greatly improve the util-
ity of derived data.

Target Activities

Use Al To Achieve Both Experimental Tractability
and Relevance. Digital twins have tremendous poten-
tial to serve as an integrative framework balancing
trade-offs in tractability and relevance in biosystems
design. This balance is critical because scale-up is one
of the fundamental challenges in biology, whether

U.S. Department of Energy Office of Science
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Fig. 2.4. Experiment Design with Al. Al provides unprecedented opportunities to integrate (1) automated workflows,
(2) reduced-complexity models on the edge, and (3) real-time data from field sensors to develop (4) micron- to meter-scale
digital twins of soil ecosystems that incorporate (5) novel algorithms and exascale computing.

going from a test tube to a fermenter or from a labora-
tory microbiome to the field.

Fermenter and field conditions are the end goal, but
they are expensive, slow, complex, and often have
many latent variables. Laboratory systems are typically
inexpensive, fast, simple, and sufficiently controlled for
mechanistic studies. Developing and integrating digital
and physical twins spanning scales and complexity will
create a powerful new capability to accelerate trans-
lation and generalization. For example, the develop-
ment and use of fabricated ecosystems (e.g., EcoFABs,
EcoPODs, and Soil Chips) will play a key role in the
development, refinement, and control of digital twin

U.S. Department of Energy Office of Science

experiments (Zengler et al. 2019). Given the common-
ality of underlying causal mechanisms such as gene
regulation and metabolism (Karniadakis et al. 2021),
mathematical and computational methods offer trans-
ferable utility across diverse biological systems. For
instance, Bayesian neural networks excel at providing
robust uncertainty quantification and interpretation,
while graph neural networks can effectively identify
complex relationships like correlations between metab-
olites and microbial interactions (Kwon et al. 2020).

Rapidly Enable Autonomous Experimentation
Using Al The incredible potential for Al design tools
to be integrated with autonomous laboratories is a

January 2026

19



20

Envisioning Frontiers in Al and Computing for Biological Research

unifying theme across diverse biological applications.
This integration can vastly accelerate navigation of the
biodesign experimental space using iterative DBTL
cycles (Carbonell et al. 2018; see Fig. 2.3, p. 18, and
Fig. 2.4, this page). Al-driven experimental design,
monitoring, and control can enable much more effi-
cient experimental designs, including adaptive experi-
mentation (Burger et al. 2020).

Biologists typically perform a series of replicate
treatment-control studies, where each study motivates
the next. Autonomous experiments can use models
(e.g., digital twins) and unreplicated data to initially
explore experimental space and then rapidly converge
on the areas with the largest uncertainty or the greatest
potential for advancement [e.g., delving more deeply
into mutations that display significant changes in
phenotype (Stokes et al. 2020)]. These approaches
can greatly improve experimental reproducibility, rep-
licability, and productivity through standardization,
optimization, and clear definition of all experimental
parameters (NASEM 2019).

Apply Reasoning Models and Digital Twins To
Hypothesize New Biological Constructs. Reasoning
models offer a means of rapidly synthesizing existing
biological knowledge to propose new potential capa-
bilities of biological systems (e.g., novel enzymatic
activities, novel pathways, novel microbial interac-
tions, and new biology-based materials; Zhang et al.
2025). Reasoning models can generate hypotheses
much faster than human scientists can experimen-
tally test or even evaluate the hypotheses. Verification
approaches are needed to support the effort to ground-
truth hypotheses proposed by foundation models.

For example, digital twins may be used to rapidly test
hypotheses against current mechanistic or data-driven,
evidence-based understanding of biological systems
(Karpatne et al. 2017). This tactic could filter out unre-
alistic hypotheses and identify potential knowledge
gaps exposed by a new proposed hypothesis, leading to

the rapid design of more fruitful experiments.

Emphasize Explainable AI Capabilities To Advance
Scientific Understanding. Al models in biology oper-
ate along a continuum that spans predictive, causal,
and mechanistic reasoning (Sundararajan et al. 2017).
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Clarifying where a model falls on this spectrum is
essential for ensuring that Al tools are aligned with
DOE’s mission to understand and manipulate biologi-
cal processes for energy, biomaterials, and CMM.

Predictive models are designed to identify statistical
patterns in data and use patterns to forecast future out-
comes or classify biological states. These models, such
as those used to predict protein structure, gene expres-
sion levels, or phenotypic traits from multiomic inputs,
can achieve high accuracy but typically lack interpret-
ability; they do not explain why a prediction is correct.

Causal models go beyond pattern recognition to infer
directional relationships among variables, identifying
which genes, pathways, or environmental factors influ-
ence others under specific conditions. In biological
systems, causal inference can uncover the regulatory
factors driving gene expression, the interactions shap-
ing microbial communities, or the triggers of pheno-
typic shifts.

Mechanistic models, the most explanatory tier, aim

to reconstruct the internal organization of biological
systems. They identify modular structures—such as
regulatory circuits, metabolic subnetworks, or signal-
ing cascades—that collectively produce a functional
outcome (Orth et al. 2010). Mechanistic models are
closely aligned with experimental biology, as they offer
interpretable, testable hypotheses about how biologi-
cal function emerges from system structure.

While noncausal, nonmechanistic predictive Al
models can enable effective design of biological sys-
tems, applications and advances from these models
will ultimately plateau, as this kind of extrapolation
can only be extended so far (Frazer et al. 2021; Peng
etal. 2025). For example, protein language models
(PLMs), purely predictive Al algorithms, are excep-
tionally good at predicting the types of mutations

and variations that arise from natural evolution
because that is the dominant variation found in pro-
tein sequence databases (see Fig. 2.5, p. 21). Without
fine-tuning, PLMs fail to predict mutations that occur
in adaptive laboratory evolution experiments because
these mutations are a product of evolution in artificial,
laboratory-created conditions.

U.S. Department of Energy Office of Science
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Fig. 2.5. Pipeline for the ProteinDT Pretraining Framework. Pretraining steps (A-C) and downstream tasks (D-F).

(A) ProteinCLAP, a contrastive learning paradigm, aligns the representation spaces of the text and protein sequence modal-
ities. (B) The ProteinFacilitator model augments the mapping from text sequence representation to protein sequence
representation. (C) A protein sequence decoder generates protein sequences conditioned on the representations produced
in the previous steps. (D) Downstream text-to-protein generation task. (E) Downstream text-guided protein editing task.

(F) Downstream protein property prediction task. [Image republished from Liu, S., et al. 2025. “A Text-Guided Protein Design
Framework,” Nature Machine Intelligence 7, 580-91. DOI:10.1038/s42256-025-01011-z.]

While PLMs are certainly excellent tools for protein

2.4 Novel Algorithms
for Genomics

design, their predictive nature limits the protein design
space they can effectively explore. This limitation
PRD 4: Develop algorithms to detect patterns

in gene and genome organization within and

highlights the importance of developing explainable
Al methods in close collaboration with scientists and

laboratory facilities, thus taking advantage of both AI
and human capabilities. Integrating digital twins and
human-in-the-loop systems with experimental data
sources is particularly powerful in this context because
comparison and control of the two provide a robust
framework to direct experiments toward key knowl-

edge gaps.

U.S. Department of Energy Office of Science

across species to predict phenotypic plasticity.

Rationale (Challenges and Opportunities)
Deciphering the intricate relationships between

genes, genomes, epigenomes, transcripts, proteins,
metabolites, and phenotypes in diverse species is an
algorithmic challenge complicated by massive and

January 2026
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complex datasets across communities and scales. Exas-
cale computing can provide the necessary resources to
train models with vast amounts of data and to optimize
complex networks, leading to more efficient pathways
and promising outcomes. Novel Al approaches inte-
grating HPC with experiments are an opportunity

to overcome the high dimensionality and sparsity of
omics data.

Key Question

® How can novel Al approaches such as digital twins,
foundation models, and other computational tools
be integrated with omics research to discover,
understand, and predict the molecular mechanisms
in plants, microbes, and microbial communities
that govern macroscale processes?

Impact

Advances in this space will greatly accelerate the
development and integration of novel Al capabilities
in omics research, enabling a deeper understanding

of how genes, epigenetic marks, transcripts, proteins,
and metabolites within plants, microbes, and microbial
communities govern key emergent processes. Specif-
ically, novel algorithms will transform understanding
and control of the complex networks of interactions
among the molecular entities that make up biological
systems to operate together to produce cellular, micro-
biome, and even ecosystem-level behaviors.

Target Activities

Advance Biological Algorithms. Research is needed
to advance network-theoretic frameworks that syn-
ergistically integrate multiplex networks and knowl-
edge graphs with foundation models to understand
multiscale biological interactions from molecular
mechanisms to ecosystem dynamics. Unified network
representations capable of harmonizing heterogeneous
omics datasets—genomic, epigenomic, transcrip-
tomic, proteomic, metabolomic, and microbiomic—
can reveal emergent patterns otherwise obscured by
data fragmentation (Wang, T., et al. 2021). The robust
computational methodologies underpinning this abil-
ity need to be developed. These methods necessitate
the implementation of specialized multiplex network

January 2026

learning architectures tailored for biological applica-
tions. Such architectures can simultaneously process
and learn from both structured biological relationship
data (e.g, protein—protein interaction networks,
metabolic pathways, and microbial community inter-
actions) and unstructured information sources [e.g.,
scientific literature, experimental narratives, and multi-
plex networks derived from large-scale omics datasets
(Szklarczyk et al. 2025)].

Furthermore, innovative edge algorithms must be
developed specifically for complex plant and microbial
community networks, incorporating domain-specific
biological constraints and leveraging transfer learning
to overcome data sparsity while accurately predicting
novel molecular interactions that govern community
behavior and function (Lotfollahi et al. 2023 ). These
computational advances will collectively transform
the ability to model, predict, and ultimately manip-
ulate biological systems across unprecedented scales
of organization, from isolates (nanometers) to com-
munities (micrometers) to full microbiomes (centi-
meters to meters), and across systems (kilometers).
This work will lead to improved and more generalized
network-based tools that are applicable to diverse data
at multiple scales. Such tools will be more accessible
and readily applicable to biologists, permitting analysis
of many data combinations that currently lack good
analytical approaches.

Develop New Models To Understand Evolution

of Sequence Features. New models are needed to
describe how molecular function changes with evo-
lutionary, model-informed sequence and structure
features (Brandes et al. 2013). Understanding molec-
ular function in the context of proximal interacting
functions with other evolving or coevolving molecules
is critical for contextualizing this interaction within the
physical and regulatory milieu of the cell (Green et al.
2021). Membrane and cell wall structure, improved
estimation of transport (Almagro Armenteros et al.
2019), and the evolution of regulation and resource
balancing across cellular systems need to be inferred
so that knowledge from one organism in a given envi-
ronment can be transferred to another in a different
environment (Dalla-Torre et al. 2025).

U.S. Department of Energy Office of Science



Research needs include organized data of these types,
evolutionary and physical models for function and
interaction, and systems that can interpolate the trans-
formation between better-studied molecules or organ-
isms and less-studied ones.

Innovate Interpretable Biological Models. Signifi-
cant methodological advances are needed to develop
advanced attention-based mechanisms (Vaswani et al.
2017) for genomic sequence models that precisely
identify and elucidate biologically significant motifs
and regulatory elements, enabling transparent inter-
pretation of deep learning predictions in molecular
biology. Engineering advanced visualization frame-
works that systematically map complex model decision
boundaries and feature importance metrics to specific
biological entities is crucial for establishing interpre-
table connections between computational predictions
and underlying biological mechanisms.

Innovation is required in counterfactual explanation
methodologies specifically tailored to biological sys-
tems. Such methodologies could simulate perturbation
effects with statistical rigor (e.g., quantifying predicted
expression changes following regulatory element
modification; La Fleur et al. 2024 ), thus enabling
hypothesis generation for experimental validation.
These capabilities, if applied to data in BER facilities
like the Environmental Molecular Sciences Laboratory
(EMSL) and DOE Joint Genome Institute (JGI) or
data repositories like KBase, NMDC, and the BER
Data Lakehouse, could translate into powerful new
hypothesis-driven experimental design frameworks,
enhancing experiment productivity and improving the
capacity to draw insights from complex data.

Engineer High-Throughput Hardware and Soft-
ware. Developing large-scale computing frameworks
optimized for the unique computational character-
istics of biological multiplex network algorithms
requires leveraging exascale computing architectures
to process unprecedented volumes of interconnected
biological data (Mammoliti et al. 2021; Acosta

etal. 2022). Transformative research is necessary to
develop containerized, reproducible AT workflow
ecosystems—specifically designed for multiomics
data processing—that seamlessly scale from personal

U.S. Department of Energy Office of Science
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computing environments to leadership-class super-
computing facilities while maintaining reproducibil-
ity across computational platforms. Advances are
needed in memory-efficient algorithmic approaches
for processing and analyzing omics-scale datasets

(e.g., files encoding raw DNA reads from deep metag-
enome sequencing are around 300 to 600 gigabytes).
Additionally, specialized hardware accelerators and
optimization techniques must be designed for com-
putationally intensive bioinformatics operations (e.g.,
sequence alignment, structural prediction, and phylo-
genetic inference), dramatically improving throughput
while reducing energy consumption for large-scale
biological data analysis. All these advances would be
immediately applicable to improving the cyberinfra-
structure of BER facilities and resources (e.g., JGI,
EMSL, NMDC, KBase, and the Protein Data Bank).
These advances would also be valuable for ongoing
development in ASCR’s Integrated Research Infra-
structure and High Performance Data Facility projects,
which will ultimately provide support for all BER facil-
ities and research.

Use Agent-Based Modeling To Aid Integration of
Multiomic and Environmental Data. Agent-based
modeling approaches must be designed to establish
quantitative bridges between molecular-level mech-
anisms and emergent community-level dynamics

in microbial systems, thereby connecting genomic
information to observable environmental phenomena
through principled computational abstractions. Such
methods would reduce the substantial lag that pres-
ently exists between experimental data generation and
rich mechanistic analysis, as without Al infrastructure,
these activities are generally performed by multiple
expert parties in collaboration. With Al agents, these
collaborations would still be required, but modelers
would be able to provide experimental collaborators
with agentic interfaces that enable them to use nat-
ural language to drive models and ask models ques-
tions about their data (Thirunavukarasu et al. 2023;
Borghoff et al. 2025).

Develop Experimental Designs for Model Val-
idation and AI-Driven Discovery. Collaborative
teams need to conduct Al-informed laboratory and

January 2026
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field experiments that generate data for validating and
calibrating predictive models. An iterative process
involving the design and construction of experimental
systems, followed by testing model predictions against
empirical data, will refine both models and exper-
iments to ensure reproducible results and accurate
predictions (NASEM 2019). Integrating biological
insights with computational approaches will also help
identify complex biological mechanisms and processes
that can benefit from Al-driven analysis and model
development (Karpatne et al. 2017). In addition, AI
can be leveraged to explore and uncover emergent bio-
logical behaviors.

Leverage Reinforcement Learning Agents for
Mechanistic Discovery. Reinforcement learning (RL)
agents are emerging as powerful tools for mechanistic
reasoning in biological systems, as recently shown with
protein-ligand interactions (Lee et al. 2025). Unlike
traditional predictive models that passively learn from
labeled data, RL agents actively explore large, multiplex
biological networks to uncover causal and functional
relationships (Yang et al. 2023). These agents simulate
how perturbations (e.g., gene edits or environmental
shifts) affect system behavior, traversing complex
omics and interaction networks to identify regulatory
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circuits, metabolic pathways, or condition-specific sub-
networks. Their ability to incorporate rewards based
on biological plausibility, such as network coherence,
literature alignment, or experimental validation, makes
RL especially well-suited to guiding hypothesis gener-
ation, adaptive model refinement, and targeted experi-
mental design (Liu, H., et al. 2022). When embedded
within digital twins or Al-guided laboratory platforms,
RL agents can iteratively prioritize interventions,
optimize trait engineering strategies, and accelerate
the discovery of transferable biological mechanisms
(Khdoudi et al. 2024).

These algorithmic innovations can also be applied to
develop mechanistic models of numerous biological
systems important to the DOE mission (e.g., bio-
mining in plants and microbiomes to accumulate and
separate CMM; engineering more resilient bioenergy
crops; and designing microbes to produce oils and
other valuable byproducts or digest waste; Rylott and
van der Ent 2025). By integrating root transcriptomics,
metal transport pathways, and microbial-assisted metal
solubilization, such models can guide the design of
crops and consortia for CMM recovery, an emerging
DOE priority (U.S. DOE 2023c).

U.S. Department of Energy Office of Science



Data Generation for Al

3.1 Rationale (Challenges
and Opportunities)

AlphaFold would not have been possible without the
coordinated efforts of a large community of protein
crystallographers who generated the Protein Data
Bank (PDB; see sidebar, DOE Powers Discovery, p. 9).
The National Institutes of Health Protein Structure
Initiative also contributed significantly to this database
of high-quality structures, which made training the AI

system possible.

Effective development of Al tools for cells and eco-
systems will similarly require vast amounts of new,
standardized data that are of sufficient quality, reso-
lution, and content. Generating such data requires
community standards and close partnerships between
computational scientists and experimentalists. DOE’s
national laboratory complex—with world-leading user
facilities and deep domain expertise across application
areas—is uniquely suited to provide high-quality,
Al-ready data at the needed scale. Exascale comput-
ing will facilitate the integration of multiscale models,
allowing Al to learn relationships and predict emergent
properties that are impossible to capture with smaller
computational resources. To address BER missions

in biology and achieve the identified priority research
directions (PRDs), these efforts should focus on the
largest knowledge gaps. This focused collaboration will
motivate the development of breakthrough technolo-

gies for measuring key parameters.

U.S. Department of Energy Office of Science

3.2 Impact

The coordinated effort of the ASCR and BER research
communities to rapidly generate standardized data will
greatly facilitate all proposed PRDs. This coordination
includes developing new modalities for making key
measurements to illuminate currently “dark” biolog-
ical processes across scales. Critically, this effort also
includes creating community standards, establishing
new incentives, and enabling large multilaboratory
experiments to generate data of sufficient quality

and scale.

3.3 Target Activities

Large Coordinated Experiments To Generate Mul-
tiscale and Multimodal Data at Scale. Just as the
physics community assembled around the quest to dis-
cover the Higgs boson (ATLAS Collaboration 2022),
the ASCR and BER communities need to assemble
around key organisms, ecosystems, and questions

to rapidly generate necessary data across scales and
modalities (Thompson et al. 2017). Having a central
theme represents a new mode of experimentation
where communities of scientists collaborate to fill data
analysis gaps and support community models. This
approach demands high-quality annotations, which
must be accurate, consistent, and clearly defined. Tool-
ing for capturing user expertise plays a major role in
validating inter-annotator agreement and in establish-
ing uncertainty scores (Dumitrache et al. 2020).

Drive Data Standardization with Recognition
of Data Generators. New paradigms for individual

January 2026
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Fig. 3.1. Standardized Analyses. The diagram illustrates replicable experimental capabilities and community standards for
data generation and deposition, which are required to enable integrative data analysis across time and laboratories.

contributions are needed to incentivize the develop-
ment and acceptance of standardized experiments,
data, and mathematical and computational tools (Data
Citation Synthesis Group 2014; see Fig. 3.1, this
page). This is especially true in the biological sciences,
where scientists are evaluated based on the number,
quality, and authorship position of their publications
(Brand et al. 2015). Watermarking data and creating
community leaderboards are innovative ways to track
contributions that improve understanding and model
accuracy (Choudhary et al. 2024; Gergov and Tsochev
2025; Rafi et al. 2025).

Community Standards for Data Generation and
Deposition. Unknown data reproducibility and rep-
licability are major challenges to using most existing
biological and environmental studies for Al model
training (Ball 2023). Few studies are replicated within
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the same laboratory; fewer still across multiple labo-
ratories. This is a critical gap that must be addressed
through community organization of replicate studies
to identify and understand how uncontrolled or latent
variables (e.g., protocol details, instrument type, and
season) impact outcomes. These variables must be
specified and measured to obtain reproducible results.

Replicate studies across multiple laboratories and loca-
tions will provide key insights into how sample size
influences results, ultimately enabling Al-assisted study
designs to generate high-confidence findings and useful
data while facilitating improved use of automation (see
Fig. 2.2, p. 16, and Fig. 3.2, p. 27). Addressing these chal-
lenges will require significant efforts in developing and
disseminating standardized experimental protocols and
resources, such as those being developed for fabricated
ecosystems (Zengler et al. 2019; Novak et al. 2025).

U.S. Department of Energy Office of Science



Analysis

Instruments measure
microbial phenotypic
properties using an array
of techniques such as
fluorescence, imaging, and
high-performance liquid
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Fig. 3.2. Laboratory Automation. The Anaerobic Microbial Phenotyping Platform (AMP2) is one of many synergistic exper-
imental user facilities supported by BER. AMP2 conducts anaerobic microbial phenotyping experiments by integrating com-
plex devices and tools, such as robotic arms, sample transport, laboratory automation, software, and analytical instruments,
all inside connected anaerobic chambers. Such studies will provide novel information about biological functions that enhance
understanding, predictions, and control of complex bioeconomy-relevant processes. [Courtesy Environmental Molecular

Sciences Laboratory]

Community efforts are also necessary for interoperable
and standardized format adoption. Data should be
stored in formats that are open, widely supported, and
easy to parse. Example formats include:

* CSV,HDFS, and NETCDF for tabular and time
series data

* PNG, TIFF, and OME-TIFF for images
* PDB, MMTE, mmCIF, and FASTQ for genomics
* JSON and YAML for metadata

Although not the focus of this workshop, considerations
about domain ontologies for consistent terminology are
important for team science and productivity.

U.S. Department of Energy Office of Science

AI Models To Focus Efforts on Biological
Unknowns. Sequencing and multiomics have revealed
the existence of a vast diversity of organisms, genes,
and metabolites with unknown functions. For exam-
ple, only 5% of microbes have been characterized.
Generally, fewer than 50% of the genes in a given
microbe have known functions (often it is far less),
and less than 10% of the metabolites in a given sample
can be identified (Hoffmann, M. A, et al. 2022; Vanni
etal. 2022). Closing the gap on unknown functions is
a grand challenge in biology.

Al tools can improve microbial isolation for subse-
quent characterization using high-throughput genetic
and phenotyping activities (Liu, S., et al. 2022).

January 2026
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Fig. 3.3. Example of Virtual Reality Interaction. A photo-
realistic 3D rendering of a homogeneous sorghum field.
[Courtesy NSF Grant 2417510 Collaborative Research IIBRP
VR-Bio-Talk VR Voice-Controlled Visual Analytics Platform
for Plant Digital Twins; B. Benes, V. Popescu, A. Magana,

D. Pauli, and N. Merchant]

Complementing these efforts with in situ community
editing and perturbation experiments is critical for
testing gene and metabolite function in uncultivated
microbes (Nethery et al. 2022).

State-of-the-art Al-driven methods (built on reasoning
foundation models that utilize knowledge graphs) can
systematically integrate and analyze diverse biological
data, allowing for the prediction and exploration of
unknown metabolites, genes, and microbes. This
approach reveals new functional insights and even
enables the conceptualization of entirely novel biolog-
ical pathways or entities. Incorporating human-in-the-
loop approaches and advanced visualization (see Fig.
3.3, this page) can further enhance the discovery pro-
cess, allowing domain experts to iteratively refine Al
outputs, prioritize plausible hypotheses, and guide tar-
geted experimental validation. This human—AI synergy
accelerates biological understanding and innovation,
effectively transforming sparse insights into impactful
discoveries (Prince et al. 2024).

Technologies To Measure Key Variables and
Responses. The small scale of microbial interactions
relative to the ability to measure and monitor systems
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(ideally noninvasively) leads to many knowledge gaps
that impair efforts to apply Al to biological systems.
Addressing this challenge requires the development
and standardization of breakthrough technologies like
quantum imaging to generate key data on micron-scale
processes.

Benchmarking and Expert Review of AI-Driven
Biological Models. As Al becomes increasingly cen-
tral to biological discovery, rigorous benchmarking and
expert-guided evaluation are essential to ensure that
models are not only technically sound but also biolog-
ically meaningful (Marbach et al. 2012). Traditional
machine learning metrics, such as Area Under the
Receiver Operating Characteristic curve (AUROC),
Area Under the Precision-Recall curve (AUPR), top-k
precision, and calibration error, remain important for
evaluating predictive performance. However, biolog-
ical applications demand additional validation layers.
Mechanistic models should be benchmarked against
known pathways, gene—gene interactions, or regulatory
circuits. Causal inference models should be compared
to experimental perturbation data or inferred interven-
tion effects (Bansal et al. 2022; Szklarczyk et al. 2023).
Conservation across species, alignment with curated
ontologies (Gene Ontology Consortium 2021), and
the recovery of literature-supported relationships offer
additional structure-aware metrics. Agentic reasoning
should be assessed through consistency across agent
instances, factual grounding, and clarity of mechanistic
explanations (Jacovi and Goldberg 2020).

Critically, automated evaluation must be paired with
human-in-the-loop expert review (Mosquiera-Rey
etal. 2022). Domain experts play a central role in
assessing the plausibility, novelty, and contextual rel-
evance of Al-generated hypotheses. To facilitate this,
Al systems should output interpretable intermediate
representations—ranked mechanistic gene sets, sub-
networks, or pathway narratives—accompanied by
model confidence scores, provenance metadata, and
natural language rationales. Integrating expert feed-
back into model refinement closes the loop between
computational inference and experimental utility,
aligning AT outputs with the goals of hypothesis gener-
ation, trait engineering, and biological insight.

U.S. Department of Energy Office of Science



Crosscutting Approaches

ASCR supports work in Al applied mathematics,
computer science, and exascale computing. This
chapter explores how those efforts may be applied in a
crosscutting manner to enhance the biological research
performed within BER’s mission space (see Table 4.1,

p-30).

4.1 Novel Algorithms
Rationale (Challenges and Opportunities)

Biological processes interact with their environment
to produce complex systems-level outcomes. Under-
standing and capturing these systems is a core DOE
mission. Many ecosystem-scale processes are the result
of interactions among multiple microbial community
members, resulting in a community-level phenotype
that is more than the sum of its parts (e.g., individual
genes or genomes). For example, degrading complex
organic feedstocks requires the cooperative hydrolytic
capabilities of many individual microbial community
members (Arnosti et al. 2021).

Most of these community members have only been
measured in metagenomes, so they lack fully sequenced
genomes or cultured representatives and have poor
functional annotation. While Al applications in biol-
ogy have primarily focused on deep representations of
genes, proteins, or genomes (Knutson et al. 2022), their
applicability to systems- or community-level processes
is largely unexplored. Areas of sparsity in new data
representations, dimension reduction, and uncertainty
quantification need further exploration (see Fig. 4.1,
p-31). Efforts to apply Al to community-level processes

U.S. Department of Energy Office of Science

raise the question of whether existing Al algorithms
could be adapted to these tasks or whether only novel
approaches, particularly those relying on exascale sys-
tems, are amenable to handling exponentially complex
biological phenomena.

The limitations of current biological foundation
models are another open question. These models are
trained on data resources that are likely biased toward
well-studied functions and organisms rather than
representative systems. Creating generalizable models
that capture true biological diversity will require novel
mathematical and AT approaches to tackle data acqui-
sition, usage, analysis, and model evaluation, as well

as the identification of data gaps whose resolution will
best aid model generalization and deployment in open
environmental settings.

Key Questions

® What new mathematics, computer science, and
computational sciences are needed to advance the
analysis of complex genomic, microbial, and envi-
ronmental data?

* How can the simulation of biological processes be
advanced from the cellular scale to the reactor, bio-
material, crop field, or even ecosystem scale?

*  Which algorithms must be developed to appropri-
ately quantify and understand uncertainty?

* How can the amount of data necessary for training
Al be defined?

* How should data be assessed?

January 2026
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Table 4.1. BER Challenges and Corresponding ASCR Research and Development

Crosscutting

Focus Area

Example Biological Question

Computer Science/Math Focus

Novel Algorithms

Multiscale and
Multimodal
Modeling

Data Fusion

Foundation Models

Digital Twins

Verification
and Validation

Experiment Design
and Automated
Laboratories

January 2026

How do individual microbe-metabolite
interactions drive overall response and
adaptation in complex microbiome
systems?

Can scientists design an energy crop that
will be resilient to dynamic unfavorable
growth conditions encountered in nature?

How can single-cell transcriptomes
be integrated with bulk proteomics?

How can regulatory motifs in Arabidopsis
provide insights to support engineering of
gene expression in bioenergy crops?

How can researchers simulate engineered
microbiome response to perturbations in

growth conditions and individual genomes?

How can researchers ensure that pre-
dictions of optimal enzyme and path-
way designs hold up during wet lab
implementation?

How can researchers design and experi-
mentally iterate toward optimal synthetic
microbial consortia?

+ Develop energy-constrained sparse-
learning algorithms inspired by bacterial
networks (e.g., compressed sensing on
graphs).

+ Create new reasoning models that reflect
current biological reasoning approaches.

+ Develop mathematical approaches for
modeling large language model efficiency.

+ Couple agent-based root models with
continuum computational fluid dynamics
via surrogate mapping functions driven by
machine learning.

* Design exascale-scalable manifold-
alignment methods with uncertainty
estimates.

* Train multimodal large language models
on federated genomic and phenotypic
corpora, with domain-adaptation fine-
tuning and guardrails.

+ Develop new models that explore graph
learning approaches for inferring causal
connections in data.

+ Build hybrid physics-machine learning
digital twins using partial differential
equations/ordinary differential equation
cosolvers accelerated by graph-based neu-
ral surrogates.

* Implement out-of-distribution detection
and conformal prediction uncertainty
quantification layers across all machine
learning pipelines.

* Provide safety guardrails and monitoring
processes for foundation models, agentic
systems, and more.

+ Deploy Bayesian optimization and
active-learning controllers in closed-loop
robotic platforms.

U.S. Department of Energy Office of Science



f(x)

Chapter 4 | Crosscutting Approaches

' >

{’:‘ &)

{ A E RSV A

Fig. 4.1. Gaussian Process (GP) Regression Applied to Heterogeneous Biological Inputs. The plot illustrates GP-based
function approximation, f(x), designed to predict a biological or chemical property across a wide range of substances. The
model is trained on known data (red dots) and generates a best-fit prediction (solid line) along with a measure of confidence
(error bars). A key science challenge is how to compare and model entities that are fundamentally different, such as sim-

ple chemicals (e.g., acetone and methane) and complex viruses. To achieve accurate prediction in such a diverse dataset,
upcoming science efforts should focus on developing new ways to describe these entities and measure their similarity to the
model. [Courtesy University of California-Berkeley Center for Advanced Mathematics for Energy Research Applications, James

Sethian, and Marcus Noack]

Impact

Developing new algorithms driven by advances in
mathematics and computer science will play a promi-
nent role in enabling the next generation of biological
discovery. These innovations will facilitate the model-
ing and understanding of complex biological systems,
improve the generalizability and interpretability of Al
models in biology, and accelerate progress in energy
and biotechnology challenges. Furthermore, these
advances will drive the success of other crosscutting
approaches.

Target Activities

Novel Algorithms for Community-Level and
Systems Biology. Al approaches that can operate on

U.S. Department of Energy Office of Science

sparse, high-dimensional, and incomplete data are
needed to develop novel algorithms capable of mod-
eling interactions among microbial communities and
systems-level biological processes. These algorithms
must move beyond the current focus on genes and
genomes to address the complexity of biological sys-
tems at multiple organizational levels.

Bioinspired Computing Approaches. Developing
biologically inspired computing systems that lever-

age principles such as parallel processing, distributed
architectures, and adaptive learning for energy-efficient
Al is a promising direction. By emulating the computa-
tional efficiency and adaptability of biological systems,
new paradigms in Al—including sparse learning,

January 2026
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attention mechanisms, and energy-efficient training
algorithms—can be realized.

Mathematical Innovations for Biological Data.
Advances in mathematical frameworks are critical

for analyzing and interpreting large-scale biological
data. Innovations such as information geometry for
biological network analysis, statistical models of col-
lective biological computing, and optimization theory
for energy-constrained learning systems will enable
deeper insights into biological complexity. Additional
needs include novel optimization algorithms for met-
abolic networks, advanced Al architectures for protein
structure prediction, improved graph-theoretical
approaches for modeling cellular networks, and new
mathematical frameworks for capturing multiscale bio-
logical processes.

Advancements in partial differential equations (PDEs)
for complex mechanisms, computational topology,
manifold learning, and information theory could
enable better modeling of biological systems. Further-
more, developments in high-performance computing
(HPC) can accelerate biological simulations and anal-
yses. These mathematical and computational advances
will be increasingly important for engineering biologi-
cal solutions to energy challenges.

Causal Inference and Handling Incomplete Data.
To advance causal inference in biological systems, new
techniques need to be developed, including topologi-
cal, stochastic, and information theory-based methods
for analyzing complex biological networks. Scalable
computational approaches are essential, including spe-
cialized graph neural networks (Knutson et al. 2022)
and Bayesian methods robust to biological noise and
missing data (Noack and Ushizima 2023). Further-
more, innovations such as Bayesian Gaussian Process
latent variable models (Ziaei et al. 2024) for dimen-
sionality reduction and manifold learning—as well as
optimization techniques utilizing parallel tempering
on exascale machines—can address challenges related
to incomplete data and scale.

High-Performance Computing for Biological Simu-
lation. Leveraging advances in HPC will accelerate bio-
logical simulations and analyses, enabling the study of
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complex, multiscale biological phenomena. These com-
putational advances are essential for transforming the
massive amounts of data generated by modern experi-

mental techniques into actionable scientific insights.

4.2 Multiscale and
Multimodal Modeling

Rationale (Challenges and Opportunities)
Multiscale and multimodal modeling involves inte-
grating multiple models operating at different scales
and modalities, utilizing diverse data inputs to achieve
comprehensive insights into biological systems. The
current lack of sufficient high-quality data spanning all
relevant scales and modalities is a fundamental chal-
lenge for this type of modeling. Highly instrumented
laboratory and field ecosystems have the potential to
provide the necessary data. However, there are sev-
eral challenges in using multiple data sources, such as
extracting and combining features from both struc-
tured information and unstructured data (e.g., images
and videos). Recently, the sheer volume and hetero-
geneity of data have demanded new computational
approaches to enhance the speed and scale of simula-
tions (Cao and Gao 2022).

Al offers tremendous opportunities to meet these
challenges and predict how molecules, cells, and
organisms interact with each other and the environ-
ment over time. For example, Al can enable analysis
of large omics data to better understand microbial
phenotypes and community metaphenomes (Gao
etal. 2022). When decoding biological systems, mul-
timodal approaches can combine instrument data and
simulations into inference networks that reveal gene
regulatory connections responsible for physiological
outcomes (Yang et al. 2021). Computational model-
ing incorporating statistical and mechanistic methods
can identify key control points for microbiome engi-
neering (Leggieri et al. 2021). Data from genomic,
metabolomic, proteomic, and phenotypic sources can
be fused to create comprehensive models that forecast
biological responses and interactions (Singh et al.
2016; Mansoor et al. 2024).

U.S. Department of Energy Office of Science



Building faithful representations of relevant variables
that communicate across scales is a critical problem

in multiscale modeling. Addressing this issue is espe-
cially challenging in biology, where transition models
between scales must be carefully formulated and
robustly deployed (see Fig. 2.2, p. 16). New Al tech-
niques have transformed the conventional Edisonian
Design-Build-Test cycle into a multidimensional
Design-Build-Test-Learn-Predict workflow, enabling
the combination of multiscale and multimodal models

that have significantly improved operational efficiency.

Key Questions

*  What new mathematical and computational
approaches are needed to bridge genome-based
molecular-scale models with ecosystem-scale
models to better understand biological processes

across scales?

* How can multiscale modeling leverage sparse,
hard-to-acquire data to generate meaningful
and verifiable predictions about biological pro-
cesses, especially in complex microbial and

plant communities?

* When using data across modalities, can Al enable

insights beyond correlation?

Impact

Advancements in multiscale and multimodal model-
ing, powered by A, will enable deeper understanding
of complex biological systems and their interactions
across scales. These innovations will accelerate the dis-
covery and engineering of target organisms, molecules,
and metabolic pathways for desired outcomes such as
improved crop yields, enhanced production of valu-
able compounds, and increased resistance to disease
and environmental stress. Integrating Al-driven work-
flows will reduce costs, optimize resource use (Naveed
etal. 2024), and sharpen the focus of field experi-
ments (Singh et al. 2016; Gong et al. 2024; Mansoor
etal. 2024; Zhang et al. 2024), ultimately facilitating
enhanced bioproduct development and more efficient

biotechnological processes.

U.S. Department of Energy Office of Science
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Target Activities

Integration of Multiscale and Multimodal Data
Using Al Al offers unique opportunities for predict-
ing how molecules, cells, and organisms interact with
each other and the environment over time, enabling
the analysis of large omics datasets to better under-
stand microbial and plant phenotypes and community
metaphenomes. Multimodal approaches can combine
instrument data and simulations into inference net-
works that reveal gene regulatory connections respon-
sible for physiological outcomes (Eissing et al. 2011;
Deisboeck et al. 2014; Cao and Gao 2022; Loumeaud
etal. 2024). Fusing data from genomic, metabolomic,
proteomic, and phenotypic sources enables the cre-
ation of comprehensive models that forecast biological
responses and interactions (Yang etal. 2021).

Computational Modeling and Microbiome Engi-
neering. Computational modeling incorporating
statistical and mechanistic methods can identify key
control points for microbiome engineering (Gao et al.
2022). These approaches aid in the discovery of target
organisms, molecules, and metabolic pathways that
produce desired compounds or environmental feed-
backs, supporting outcomes such as better-yielding
crops, higher production of desired molecules, and
greater resistance to disease and environmental stress.

Al-Enabled Simulation and Model Communication.
Al-based simulation approaches such as surrogate mod-
els can replace comparatively expensive computational
methods, while Al agents can automate the analysis

of experimental data and refine and curate models. In
addition, AT matching models generated from collected
and measured data can communicate between highly
accurate solvers at different scales, and Al co-scientists
can assist in interpreting simulation results.

4.3 Data Fusion
Rationale (Challenges and Opportunities)

Advanced scientific computing, applied mathemat-
ics, and fundamental computer science underpin

Al approaches that excel at integrating complex bio-
logical data, particularly the challenging multiomics
and multimodal datasets that traditional mechanistic
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approaches struggle to parse (Er et al. 2024). However,
integrating this data relies upon robust data organi-
zation and standardized information associated with
consistent sample IDs (U.S. DOE 2022a). Preparing
“Al-ready” data requires careful attention to data
sources, metadata, and domain knowledge prior to the
development of encoding algorithms.

Once properly prepared, Al techniques powered by
linear algebra, optimization theory, and graph algo-
rithms can improve and accelerate integration by
encoding diverse data types into a common vector
format, enabling seamless association and analysis.
Close collaboration between applied mathematicians,
computer scientists and domain scientists is essential
to ensure the resulting encodings have meaningful
biological interpretations. This assessment process

is likely to require the analysis of latent embedding
spaces relative to different biological interpretations to
guarantee meaningful separation of differently classed
entities. Embedding space representations, obtained
through high-performance parallel algorithms, could
aid in understanding the impact of data uncertainty on
biological conclusions, as these methods can identify
variations that have the most impact on required bio-
logical interpretations.

Key Questions

* How will computational methods grounded in
advanced applied mathematics and computer sci-
ence enable the discovery of new behaviors, mech-
anisms, and designs of biological processes by, for
example, extracting more information from avail-
able experimental data and coupling mechanistic
insights to high-resolution imaging?

* What are the challenges and potential solutions for
ensuring data interoperability and standardization
when integrating high-resolution imaging and com-
putational advances?

* How can Al algorithms capable of integrating
multimodal data (e.g., high-resolution imaging,
omics, and environmental metadata, including text
data) be designed to derive insights into microbial
phenotypes and their role in ecosystem resilience?

January 2026

Impact

Advances in Al-driven data fusion will enable the inte-
gration and interpretation of complex, multiscale, and
multimodal biological data, facilitating new discov-
eries in systems biology, environmental science, and
biotechnology. Improved data fusion will accelerate
the identification of causal relationships, enhance the
predictive power of biological models, and support the
design and engineering of biological systems for accu-
rate outcomes. Developing robust, scalable, and inter-
pretable AT methods will provide new tools to address
critical challenges in understanding and manipulating
complex biological systems, ultimately leading to more
efficient and impactful scientific research.

Target Activities

Develop AI-Driven Data Integration and Fusion
Methods. Al-driven data integration techniques,
backed by scalable algorithms and HPC resources, can
support the detection of causal relationships from data.
Data integration enables interventional and counter-
factual analysis, which can subsequently be integrated
into mechanistic models (Pearl 2009). Al-driven data
integration methods can leverage existing knowledge
to predict unknown model parameters (e.g., growth
rates and kinetic parameters) and aid in understanding
the impact of data uncertainty on simulation parame-
terization, output, and interpretation (Schillings and
Stuart 2017).

Key scientific goals of Al-driven data integration
include understanding pore-scale soil-water inter-
actions (Wang, Y. D., et al. 2021) and the impacts

of plant and microbial phenotypes on emergent
processes, such as biogeochemical fluxes, aggregate
formation and turnover, and resistance or resilience to
perturbation in flood and drought studies (Oikawa et
al. 2024). Additionally, data fusion approaches aim to
reveal how abiotic conditions influence biodiversity,
biogeography, and future responses to environmental
change. Another important role of data fusion is to
integrate diverse data products to facilitate iterative
design and engineering of plant, microbe, and micro-
bial community systems (Arkin et al. 2018).

U.S. Department of Energy Office of Science



Advance Biostructure Recognition and Multimodal
Data Analysis. To advance biostructure recognition
from multiscale and multimodal data, novel, scal-

able computational methods that can leverage HPC
resources need to be tailored to data from scientific
experiments. These computational methods should
couple AT with new mathematical frameworks and
scalable algorithms to (1) reconstruct cell, soil, and
protein structures from new and evolving complex
imaging capabilities using scalable inverse techniques
(Raissi et al. 2019); (2) seamlessly fuse data across
multimodal and multiscale imaging techniques
(Kalamkar and Geetha 2023); (3) extract feature vec-
tors and compact representations for recognition and
classification (Robitaille et al. 2022); and (4) build ref-
erence libraries of Al-ready data containing observed
and measured biological information.

Develop and Apply Foundation Models and Gener-
ative AL Current and emerging efforts in foundation
models, large language models (LLMs), and vision
transformers (ViTs; Dosovitskiy et al. 2021), many
leveraging exascale machines, could enable rapid
analysis and understanding of text, images, and videos
(Hoffmann, J., et al. 2022; Truhn et al. 2024). Founda-
tion models also have the potential to generate diverse
data types, which could remediate studies hindered by
data scarcity (Baek et al. 2021; Tunyasuvunakool et

al. 2021). These new technologies are likely to enable
more accurate identification of biomolecules, cellular
structures, and organismal phenotypes.

4.4 Foundation Models
Rationale (Challenges and Opportunities)

Foundation models are a class of general-purpose Al
models trained on massive unlabeled datasets and
characterized by their scalable multimodal capabil-
ities, since they often process and generate various
forms of data. These models can be specialized and
adapted to tasks based on domain-specific agents (see
Fig. 4.2, p. 36) or on fine-tuning methods grounded
in optimization theory and transfer learning (Zheng
etal. 2025). For example, CACTUS (McNaughton

et al. 2024) demonstrates how foundation models can
become practical scientific assistants when wrapped in

U.S. Department of Energy Office of Science
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transparent, instrumented agents that enforce guard-
rails, expose intermediate reasoning, and seamlessly
leverage HPC-hosted analytic workflows.

Beyond applications in natural language processing,
foundation models using scalable HPC infrastructure
to combine text, images, and audio are increasingly
being developed for various scientific domains. With
vast amounts of data available across fields such as
chemistry, physics, and biology, these models are
beginning to revolutionize those fields with new
insights, capabilities, and even discoveries. Foundation
models have shown the ability to identify patterns and
relationships that may be too intricate or subtle for tra-
ditional computational methods, thereby pushing the
boundaries of scientific knowledge.

Incorporating foundation models in biology holds
immense potential for understanding protein and
molecular properties. For instance, Functional Annota-
tion of Proteins using Multimodal models (FAPM), a
contrastive model linking natural language and protein
sequence language, leverages both a pretrained protein
sequence model and an LLM (Xiang et al. 2024). This
allows FAPM to generate natural language labels for
protein functions, including Gene Ontology terms
and catalytic activity predictions. Such findings were
broadly tested using public benchmarks (e.g., UniProt
Knowledgebase’s Swiss-Prot) to demonstrate FAPM’s
superior ability to understand protein properties com-
pared to models relying only on sequence or structural
data. Promising results from few-shot learning mod-
els (Zhou et al. 2024) using minimal wet laboratory
data indicate there are imminent opportunities to
understand complex biological phenomena at unprec-
edented resolution across modalities (for example, in
aggregating information across diverse biological read-
outs from sequencing, multiomics approaches, struc-
tural data, and other experimental measurements).

The intrinsic opacity of foundation models is a criti-
cal obstacle to their deployment in scientific settings.
Their billions of parameters, arranged in deep, mul-
timodal architectures, resist model interpretability.
Interpreting these models requires scalable methods
that can attribute input modalities (e.g., sequence
positions, image pixels, and spectral channels) to
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Fig. 4.2. Specializing 7B-Parameter Foundation Models with Cheminformatics Domain Benchmarking. Top panel:
Agent workflow. CACTUS wraps any open-weight 7B (7 billion parameter) large language model from Hugging Face in a trans-
parent Thought-Action-Observation loop, routing questions through a menu of qualitative and quantitative cheminformatics
questions. Because reasoning, tool calls, and checks occur entirely at inference time, a general-purpose foundation model

is domain-specialized without fine-tuning or reinforcement learning from human feedback, preserving model weights while
adding traceable guardrails. Bottom panel: Benchmark results across chemistry questions spanning 10 property classes.
The domain-prompt and tool orchestration boost accuracy of some models significantly over minimal prompting, confirming
that (1) compact open models can reach near-expert performance when coupled with domain tools and (2) prompt-level
adaptation alone delivers large gains, vital when fine-tuning is compute constrained. [Reprinted under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0) from McNaughton, A. D., et al. 2024.
“CACTUS: Chemistry Agent Connecting Tool Usage to Science,” ACS Omega 9(46), 46563-73. DOI:10.1021/acsomega.4c08408.]
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downstream predictions. Traditional interpretabil-

ity techniques, such as gradient-based saliency,
attention-score analysis, or SHAP value approxima-
tions (SHapley Additive exPlanations; Lundberg et al.
2020), must be rethought and highly parallelized to
process massive datasets and model checkpoints simul-
taneously. HPC plays two roles in this space: (1) it
provides the raw throughput for evaluating thousands
of attribution queries in parallel and (2) supports the
development of novel frameworks that reduce inter-

pretability to tractable subproblems.

The fragmented training of foundation models means
researchers have a limited understanding of how
models are trained, how they are distributed, which
data types the models support, and the purpose of the
models themselves. Building on community efforts
for foundation models is challenging because domain-
specific datasets are siloed and common metadata
standards are lacking. Key challenges in this context
include defining the context of foundation models,
identifying associated pretraining and fine-tuning
tasks, developing scalable methods for model adap-
tation, and determining how users intend to interact
with these models, particularly when using supercom-

puting resources.

Because foundation models span modalities, unified
metrics rooted in information theory and statistical
learning are necessary to quantify cross-modal feature
importance and to ensure explanations generalize
across data types. Without scalable, HPC-driven
interpretability toolkits grounded in rigorous applied
math, foundation models risk being labeled as black
boxes rather than leveraged to their full scientific
potential. Establishing robust guardrails is essential
to ensure these models can be deployed in a reliable
way. Guardrails help prevent misuse, mitigate dataset
and model biases, and ensure the models’ outputs are
accurate and aligned with scientific objectives. Fur-
ther considerations for accuracy and alignment are
discussed in the Verification and Validation section
(seep.41).

U.S. Department of Energy Office of Science
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Key Questions
* How can foundation models (including LLMs) be

useful for fast analysis and discovery?

How can foundation models be enhanced to
move beyond quick assessments and support

deeper reasoning?

* What new foundation models are necessary to
capture microbial community processes and their
interactions with their environment?

* Does DOE need to create new foundation mod-
els to avoid unknown corporate and foreign

influences?

* Isit possible for DOE to create models with
comparable performance, or should DOE
focus on developing AI agents with controls for

possible biases?

Impact

The advancement and responsible deployment of
foundation models will transform scientific dis-
covery by integrating and analyzing massive mul-
timodal datasets across disciplines. These models
will accelerate the identification of complex patterns
and relationships, support new scientific insights,
and facilitate breakthroughs in areas such as protein
function prediction, molecular property analysis, and
cross-modal data integration. By establishing robust
standards, interpretability frameworks, and resource
management strategies, the scientific community will
be empowered to leverage foundation models in a
reliable, transparent, and HPC-scalable manner, ulti-

mately driving innovation and expanding the frontiers

of knowledge.

Target Activities

Development and Specialization of Foundation
Models for Science

°® Advance the development, fine-tuning, and adapta-
tion of foundation models for scientific domains—
including biology, chemistry, and physics—by
leveraging large, diverse, and multimodal datasets.
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® Promote the creation of domain-specific agents and
transparent, instrumented wrappers that enforce
guardrails, expose intermediate reasoning, and
leverage HPC-hosted analytic workflows.

® Facilitate the use of foundation models in tasks
such as protein function annotation (Xiang et al.
2024), multimodal integration, and few-shot learn-
ing for biological discovery (Zhou et al. 2024).

Standardization, Metadata, and Community
Collaboration

* Address fragmented foundation model training by
developing and promoting common metadata stan-
dards, interoperable data formats, and open sharing
of domain-specific datasets.

* Foster community efforts to define best practices
for model pretraining, fine-tuning, distribution,
and user interaction, particularly in the context of
supercomputing resources.

° Ensure robust guardrails to establish model align-
ment with scientific objectives and mitigate misuse
and bias.

HPC-Driven Interpretability and Model
Transparency

* Develop scalable, HPC-enabled interpretability
toolkits that can attribute input modalities to pre-
dictions across massive multimodal models.

* Innovate new frameworks, such as randomized
linear algebra for low-rank approximation of activa-
tion subspaces and tensor decomposition to isolate
task-specific latent factors, to reduce interpretabil-
ity to tractable subproblems.

® Create unified, information theory-based met-
rics to quantify cross-modal feature importance
and ensure generalizability of explanations across
data types.

Resource Management and Model Access

* Develop strategies for efficient compute resource
management, including graphics processing unit
allocation, job scheduling, and resource-aware
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parallelism, for hosting and serving foundation
models on research infrastructure.

° Balance the use of commercial application pro-
gramming interface (API) services with open-
source and publicly developed models to address
concerns about cost, intellectual property exposure,
and accessibility.

* Adapt research infrastructure to meet the growing
demand for foundation model applications in sci-
entific research.

4.5 Digital Twins
Rationale (Challenges and Opportunities)

Digital twins (i.e., virtual replicas of physical systems;
see Fig. 4.3, p. 39) emerged in engineering but are now
revolutionizing various areas of study (Fuller et al.
2020; NASEM 2024). A particularly promising appli-
cation is in soil microbiome science. Digital twins’
ability to process diverse data types in real time can
address an urgent need for experimental and virtual
models of soils, especially those surrounding plant
roots (i.e., the rhizosphere). These models can bridge
laboratory and field studies, rapidly improve feedstock
crop performance under suboptimal growth condi-
tions, and develop a molecular-level understanding of
systems (Zhalnina et al. 2019).

At the ecosystem scale, hyperspectral imaging, auto-
mated rhizotron imaging, and real-time sensor data
can inform digital ecosystem twins. Purpose-built
microelectronic sensors codesigned for autonomous
laboratory and field experiments can both inform and
be informed by a digital ecosystem twin that captures
micron-scale biogeochemical reactions responsible
for ecosystem processes such as element cycling,
plant—-microbe exchange, and ecosystem productivity.
Integrating these modalities through graph-based data
fusion, manifold alignment, and in situ data compres-
sion can produce highly predictive simulations of plant
growth, microbial metabolism, and environmental

feedback.

Al modeling approaches—underpinned by scal-
able ML libraries, advanced data management, and

U.S. Department of Energy Office of Science
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Verification, validation, uncertainty quantification

From physical to virtual

2

Human-digital

Physical
counterpart

twin interaction

Human-in-the-loop

Virtual
representation

decision making

—3

From virtual to physical

Fig. 4.3. Elements of the Digital Twin Ecosystem. Digital twins create a dynamic and intimate interaction among models,
data, and decisions. The virtual representation evolves with the real-world biological (physical) counterpart, generating a
feedback loop. [Image republished from NASEM. 2024. Foundational Research Gaps and Future Directions for Digital Twins.
National Academies of Sciences, Engineering, and Medicine. National Academies Press, Washington, D.C., U.S. https://nap.
nationalacademies.org/catalog/26894/foundational-research-gaps-and-future-directions-for-digital-twins]

codesign of hardware—software stacks—can iden-

tify key biological mechanisms driving productivity
and stress tolerance, supporting the development of
robust crop and feedstock systems. Deep learning
techniques such as convolutional neural networks
(Sordo et al. 2024) on HPC platforms can be used

to analyze high-throughput plant and microbial phe-
notyping data, enabling the identification of traits
associated with stress tolerance, microbial metabolism,
and yield potential. Combining AT with mechanistic

or data-driven models on HPC architectures allows
researchers to simulate and predict plant-microbe—soil
interactions under abiotic stresses (e.g., drought, flood,
fire, and land management) using scalable parallel algo-
rithms and resilient workflow engines.

Given the long duration of most plant studies, espe-
cially in the field, HPC-driven simulation pipelines can
prioritize experiments to close key knowledge gaps by
integrating data from both laboratory and field twins

U.S. Department of Energy Office of Science

into experimental design. For example, digital twins
can integrate data from laboratory and field twins to
direct iterative experiments (see Fig. 4.4, p. 40) aimed
at identifying the biological mechanisms driving field
observations. To expedite digital twin development,
reproducible and containerized experimental plat-
forms of increasing biological, chemical, or physical
complexity will be coupled with scalable computa-
tional workflows, empowering progressive translation
from controlled systems to natural environments. This
approach enables the construction of digital twins for
highly controlled, well-defined systems, which can

later be translated to more complex environments.

Key Questions

*  Which new algorithms and scalable computational
methods will enable digital twins to optimize biol-
ogy experiments, generate and test hypotheses,
and promote robust experimentation (e.g., reduced
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Fig. 4.4. Digital Twins Drive Experiments. Digital twins will enable effective, integrated experimentation and simulation

through experimental feedback and model-driven control of both laboratory and field experiments. (A) EcoPOD at Lawrence
Berkeley National Laboratory [Courtesy LBNL]. (B) Advanced Plant Phenotyping Laboratory at Oak Ridge National Laboratory
[Courtesy ORNL]. (C) Pacific Northwest National Laboratory Phenotypic Responses experiment at a Washington State Univer-

sity field station [Courtesy PNNL].

risk of unintended consequences for microbial
interventions)?

* How can upcoming exascale computational infra-
structure and advanced software ecosystems impact
the creation and execution of digital twins?

Impact

Integrating digital twins with Al and HPC will
revolutionize the study and engineering of
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plant-microbe-soil systems, enabling real-time, pre-
dictive understanding of complex biological processes.
These advances will accelerate the development of
resilient crops and feedstocks, support novel biomanu-
facturing strategies, and facilitate the rapid translation
of laboratory findings to field applications. Ultimately,
digital twins will empower researchers to design, opti-
mize, and scale biological systems for enhanced pro-
ductivity and resilience.

U.S. Department of Energy Office of Science



Target Activities

Develop and Integrate Digital Twins for Microbial
Communities and Ecosystems

* Advance the development of digital twins to
understand and predict the behavior of microbial
communities in complex environments, such
as the soil microbiome, to transform the field of
soil restoration.

Soil ecosystem digital twins could be used to under-
stand the genomic and molecular basis of how soil
microbiomes interact with plants to generate emergent
functions such as organic matter decomposition and
storage, stress resilience, plant growth promotion, and
biomining of target elements. Digital twins encourage
a learn-from-nature approach that supports the devel-
opment of novel biomanufacturing technologies.

Apply Al and Digital Twins in Biomanufacturing
and Biosystems Engineering

* Employ Al-enabled digital twins to simulate and
optimize microbial metabolism for the produc-
tion of biofuels, biomaterials, and other valuable
compounds.

By understanding intricate microbial metabolic net-
works, researchers can engineer strains with improved
performance and efficiency and develop chassis
organisms—microbial hosts of genetic circuits—for
biosensors, biomanufacturing, and environmental
probiotic applications. Digital twins also provide pre-
dictive capabilities for scaling up optimized strains and
microbiomes from the bench scale to production or
field scales.

Leverage HPC and DOE Exascale Infrastructure

* Utilize DOE exascale infrastructure to accelerate
microbiome engineering by integrating physical
and Al models, creating predictive tools, and devel-
oping novel hypotheses for microbial interactions
and gene, metabolite, and protein functions.

* Couple digital twin approaches with HPC-driven
simulation pipelines to prioritize and design
experiments, close knowledge gaps, and enable

U.S. Department of Energy Office of Science
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translation from controlled systems to natural
environments.

4.6 Verification and Validation

Rationale (Challenges and Opportunities)
Verification and validation (V&V) in Al comprise
systematic methodologies designed to rigorously
assess the accuracy, reliability, and robustness of Al
systems (Oberkampf and Roy 2010; U.S. DOE 2020;
U.S. DOE 2023a ). Verification confirms the AI work-
flow is implemented correctly, and validation (i.e.,
benchmarking) shows that its outputs represent reality
within the intended domain. Methodologies include
model-agnostic checks and model-specific methods
that ensure Al predictions align with known biology
and experimental data for continuous improvement
(see Fig. 4.5, p. 42).

Together, V&V provide formal proofs or statistical
evidence that the system meets explicit accuracy, reli-
ability, and safety targets. These processes emphasize
transparency in decision-making, clarity in model
behaviors, and conformity to established scientific pro-
tocols (Oberkampf and Roy 2010). V&V protocols
particularly focus on guardrails, explainability, uncer-
tainty quantification, robustness against variations in
data inputs, safety in diverse operational contexts, and
accountability through detailed model documentation
and validation procedures.

For example, Monte Carlo dropout can quantify
uncertainty by sampling multiple predictions, and
SHAP values provide interpretability by attributing
prediction importance to input features (Lundberg
etal. 2020). When it is not possible to ground-truth
using first principles, theory, or experimental data
(see Section 2.3: Al-Enabled Drivers for Experimen-
tal Systems, p. 17), comparing multiple independent
models is critical, though this is acknowledged as a
weaker form of V&V.

Despite advancements, significant challenges per-
sist within V&V in biological contexts, particularly
in validating AI models across different experi-
mental conditions, managing rare or infrequent
biological phenomena, and effectively integrating
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Fig. 4.5. Verification and Validation Within the Experimental Cycle. Incorporating rigorous assessment of Al predic-
tions into the design and testing of hypotheses improves experimental outcomes, which reinforces the Al models’ accuracy

and reliability.

domain-specific expertise with Al-derived insights.
Biological systems are inherently complex and vari-
able, making reliable Al-based predictions particularly
challenging. Effective V&V involves quantifying and
explicitly representing the confidence and uncertainty
associated with ATl model predictions, thereby provid-
ing clarity on their reliability.

Incorporating interpretability within V&V enables
researchers to understand the underlying biological
mechanisms guiding Al-driven insights. For instance,
Al-driven integration of multiomics data necessitates
robust and scalable methods capable of handling het-
erogeneous data types, varying scales, missing values,
biological noise, and technical artifacts. Rigorous V&V
strategies must include extensive validation protocols,
uncertainty quantification frameworks such as Bayes-
ian inference, and adaptive methodologies tailored to
diverse experimental scenarios, such as transfer learning
approaches that validate models across varied datasets.

Scientific rigor demands reproducibility and thor-
ough validation of Al-derived results versus direct
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observations (e.g,, using digital and experimental twins
to continuously benchmark model performance; see
Fig. 4.4, p. 40). Robust V&V practices mandate trans-
parent methodologies and comprehensive documenta-
tion, including version-controlled repositories for code;
clearly standardized data formats; and detailed records
of model architectures, hyperparameters, and training
protocols. Transparency facilitates reproducibility and
independent validation of findings. Experimental stan-
dardization and replication also facilitate those quali-
ties, making them critical components of V&V.

In biological research—where field experiments can
take over a year—erroneous predictions from Al sys-
tems can lead to significant setbacks. Hence, robust
V&V protocols should incorporate systematic mech-
anisms for error detection, clearly defined uncertainty
thresholds, methods for detecting out-of-distribution
scenarios, and continuous validation against new

experimental data, such as real-time anomaly detection

algorithms, to proactively mitigate risks and ensure
reliability.

U.S. Department of Energy Office of Science



Key Questions

*  Which scalable ATl methods or tools are criti-
cal for accurately simulating biological systems
while rigorously incorporating and quantifying
uncertainties?

* What specific V&V methods and metrics should be
developed to ensure Al predictions are interpreta-
ble and robust for biologists?

* How can human-in-the-loop tools be designed to
effectively integrate human expertise without creat-
ing bottlenecks?

Impact

Embedding rigorous V&YV practices into Al-integrated
biological research workflows will enhance scientific
innovation, robustness, and reproducibility. These
approaches will clearly communicate model limitations,
quantify prediction confidence, and foster trust and
engagement with the scientific community and public
stakeholders. Ultimately, robust V&V will optimize
resource allocation, enable reliable Al-driven discovery,
and accelerate progress in complex biological research.

Target Activities

Develop and Implement Comprehensive V&V
Protocols

* Develop robust V&V protocols that combine
model-agnostic and model-specific checks, includ-
ing mathematical and logistical consistency, numer-
ical stability, and alignment with biological data.

° Incorporate uncertainty quantification meth-
ods (e.g.,, Monte Carlo dropout and Bayesian
inference), interpretable feature selection, and
out-of-distribution detection to ensure reliable and
explainable Al predictions.

Integrate V&V into Scalable Workflows and HPC
Platforms

* Leverage HPC platforms and scalable workflows to
automate V&V processes, facilitate rigorous nor-
malization, enable uncertainty-aware data integra-
tion, and support real-time anomaly detection.

U.S. Department of Energy Office of Science
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® Promote the use of digital and experimental twins
for continuous benchmarking and validation of
Al models.

Promote Transparency, Reproducibility, and
Documentation

° Establish best practices for transparent V&V meth-
odologies, including version-controlled repositories,
standardized data formats, and detailed documen-
tation of model architectures, hyperparameters, and
training protocols.

* Encourage experimental standardization and repli-
cation to support independent validation and repro-

ducibility of findings.

Establish Adaptive and Domain-Aware V&V
Strategies

* Develop adaptive V&V methodologies tailored
to diverse experimental scenarios, such as
transfer learning for cross-dataset validation,
and approaches for handling rare or infrequent
biological phenomena.

* Foster collaboration between domain experts
and Al practitioners to integrate domain-specific
knowledge into V&V processes.

4.7 Experiment Design and
Automated Laboratories

Rationale (Challenges and Opportunities)
Experiment design is the process of planning and
selecting the most effective methods of generating or
acquiring data to reliably investigate and answer scien-
tific questions, as well as to test, refine, and benchmark
models (see Section 4.6: Verification and Validation,

p. 41). With the increase in data from growing DOE
instrument capabilities and other sources, choosing
among potential experiment designs has become
nontrivial, making expertise and intuition insufficient
and suboptimal (U.S. DOE 2022c). The rise of HPC,
Al and automation introduces novel, human-in-the-
loop approaches (e.g., machine teaching, interactive
Al, and active learning) to guide experimental choices
(Mosqueira-Rey et al. 2022).
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Automated laboratories have revolutionized experi-
mental capabilities by enabling high-throughput data
generation, significantly increasing the speed and scale
of scientific inquiry. These automated systems can exe-
cute complex experimental protocols with precision
and consistency, generating vast amounts of data. For
example, active learning models are capable of select-
ing the next set of experiments with high accuracy
(Ding et al. 2024). Such approaches can balance the
exploitation of current knowledge to achieve the learn-
ing objective with the exploration of the experimental
space to accelerate discovery.

Building upon automated laboratories, autonomous
experimentation aims to further enhance the research
process by introducing Al-driven decision-making
with HPC-backed data analysis workflows (see

Fig. 4.6, p. 45). Autonomous experimentation systems,
often referred to as “research robots” or “self-driving
labs,” can plan, execute, and evaluate experiments with
minimal human intervention. These systems leverage
Al algorithms to analyze experimental data in real
time, learn from past results, and adapt future experi-
ments, optimizing for specific research objectives.

Autonomous experiments require codifying biolog-
ical design objectives into mathematically tractable
optimization problems. This challenge is exacerbated
by several factors. First, the objectives need to be
transformed into the language of optimization: what
is the autonomous experiment supposed to do?
Should it home in on particularly interesting design
choices or explore areas with little prior knowledge?
Such decisions are difficult, and it is important to
build mathematical descriptors that remove bias and
systematically explore the design space. Second, the
design space can be very large: building representa-
tions, energy functionals, probabilistic formulations,
and efficient optimization methods are all important.
These activities require state-of-the-art integration of
mathematical ideas, scalable algorithms, partitioning
and deployment in highly parallel compute environ-
ments, faithful representations of relevant biological
formalisms, and close coupling to available data and
domain knowledge (e.g., published literature). A
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scalable AI-driven system that meets these challenges

holds tremendous potential.

Novel architectures, including specialized hardware
and edge Al computing, offer exciting opportunities
to advance autonomous experimentation. Integrating
Al accelerators into experimental setups facilitates
on-site computations, reducing latency and improving
efficiency. Deploying Al capabilities directly at data
sources enables real-time data processing and decision-
making, allowing for rapid responses to dynamic
experimental conditions. Experiment design, auto-
mated laboratories, and autonomous experimentation
(Noack et al. 2020) are transformative approaches

for investigating complex biological systems, particu-
larly those with poorly characterized gene functions
or community-level phenotypes. By integrating Al
HPC, and automation, researchers can develop com-
putational approaches that ensure model generaliza-
tion to diverse environmental conditions, facilitating
rapid phenotyping and accelerating the discovery of

biological processes.

Key Questions

* How can novel Al and scalable computational
methods impact laboratory automation (e.g.,
robotics)?

° Can self-driving laboratories streamline analysis
of complex multimodal data (e.g., genomic and

phenomic data)?

* How can Al effectively incorporate prior scientific

knowledge into data-driven modeling?

®  What new Al tools that leverage exascale and edge
computing will enable and accelerate real-time
monitoring and feedback for plant, fungal, and

microbial systems?

® What tools and algorithms are needed to advance
Al experimental design?

* To what extent can Al-powered automated labo-
ratories design and execute experiments to reach

desired scientific discoveries?

U.S. Department of Energy Office of Science
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tral imaging leaf data collected using EcoBOTs (see C panel). (B) Creation of
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analysis from fabricated laboratory ecosystems acquired using the EcoBOT.

(C) EcoBOT capabilities at Lawrence Berkeley National Laboratory. [(A) reprinted
under a Creative Commons Attribution 4.0 International License (CC BY 4.0)
from Zwart, P. H., et al. 2025. “Hyperspectral Segmentation of Plants in Fab-
ricated Ecosystems,” Frontiers in High Performance Computing 3. DOI:10.3389/
fhpcp.2025.1547340. (B) Reprinted under a Creative Commons Attribution 4.0
International License (CC BY 4.0) from Sordo, Z., et al. 2024. “"RhizoNet Segments
Plant Roots to Assess Biomass and Growth for Enabling Self-Driving Labs,”
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Impact

Integrating advanced experiment design, automated
laboratories, and autonomous experimentation will
transform biological research by enabling rapid,
scalable, and reproducible investigation of complex
systems. These approaches will accelerate scientific
discovery, optimize resource allocation, and ensure
robust model development and validation. Ultimately,
the combination of AI, HPC, and automation will
empower researchers to explore vast experimental
landscapes, generate high-quality data, and drive inno-
vation in biology and biotechnology.

Target Activities
Develop AI-Driven Experiment Design and Active
Learning Approaches

* Develop and implement Al-driven experiment
design strategies that combine human-in-the-loop
methods (e.g.,, machine teaching, interactive Al
and active learning) with scalable HPC workflows
to optimize data acquisition, model refinement, and
hypothesis testing.

Advance Automated and Autonomous Laboratory
Infrastructure

° Expand the deployment of automated and auton-
omous laboratory systems capable of executing
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high-throughput experiments, real-time data analy-
sis, and adaptive experimental planning.

° Integrate Al accelerators and edge computing for
on-site data processing and rapid decision-making.

Optimize Experimental Objective and Design
Spaces

* Codify biological design objectives as mathemat-
ically tractable optimization problems to enable
systematic exploration of large design spaces.

* Develop surrogate models, probabilistic frame-
works, and efficient optimization algorithms
to facilitate autonomous experimentation and
discovery.

Integrate AI, HPC, and Automation for Rapid
Biological Discovery

® Leverage the synergy of Al, HPC, and automation
to accelerate phenotyping, model generalization,
and the investigation of complex biological systems,
including those with poorly characterized gene
functions and community-level phenotypes.

U.S. Department of Energy Office of Science



Concluding Remarks

Multidisciplinary discussions at the 2025 workshop
on Envisioning Frontiers in Al and Computing for
Biological Research identified four priority research
directions (PRDs): Multimodal Data Assembly,
Multiscale Biosystems Simulation, AI-Enabled Driv-
ers for Experimental Systems, and Novel Algorithms
for Genomics. These PRDs underscore the essential
integration of advanced computational methodologies,
such as deep learning, physics-informed modeling,
scalable algorithms, and exascale computing platforms,
to address complex biological challenges relevant to
DOE missions.

While significant progress has been made, this
workshop highlighted several areas requiring deeper
computational specificity. Algorithmic innovation,
explicit treatment of computational complexity with
HPC, and rigorous verification and validation mech-
anisms are critical gaps. Addressing them will involve
detailed exploration and development of specific com-
putational methods such as graph neural networks,
probabilistic inference, Bayesian optimization, and
multiresolution modeling, all carefully tailored to bio-
logical contexts.

Many areas of biology continue to be data sparse.
The DOE national laboratory system is uniquely
positioned to generate the massive quantities of
high-quality data needed to fill this gap by leveraging
existing facilities and deep domain expertise. DOE
user facilities are unmatched data generators because

U.S. Department of Energy Office of Science

they operate multibillion-dollar scientific instruments
that industry cannot afford, enabling researchers

to conduct experiments under extreme conditions
and at atomic resolution. The quality of this data is
guaranteed by highly expert teams of scientists and
engineers who conduct the experiments and operate
the instruments. This specialized expertise ensures
data meets rigorous quality standards and includes
rich, standardized metadata, making the resulting
datasets inherently Al ready and superior for train-
ing robust models. Unlike proprietary industry data,
DOE'’s focus on basic research and open access cre-
ates massive public datasets for the entire scientific
community.

Challenges and opportunities exist to improve
throughput, accuracy, reproducibility, efficiency, and
capability of experimental data generation platforms.
Applying Al algorithms in this domain can improve
the identification of knowledge gaps and guide the
design of experimental campaigns that most effectively
address such unknowns.

Advancing the computational biology frontier
demands continued interdisciplinary collaboration,
investment in computational infrastructure, and stra-
tegic alignment between computational scientists
and biologists (see Table 5.1, p. 48). Applying the full
potential of AI, ML, and computational sciences to
biological research will drive transformative discover-
ies and enable unprecedented capabilities.
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Table 5.1. Crosscutting Methodological Innovations in ASCR that Can Support BER Investigations

Focus Area

Biological Challenge

ASCR Methodological Innovation

Novel
Algorithms

Multiscale and
Multimodal
Modeling

Data Fusion

Foundation
Models

Digital Twins

Verification
and Validation

Experimental
Design and
Automated
Laboratories
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Identify systems-level emergent
behavior from molecular rules

Obtain mechanistic understanding
of biological interactions across
scales

Fuse multiomics and imaging
into causal models

Generate and reason about
hypothetical biomolecular functions

Conduct virtual crop, soil, and
microbiome experiments

Enable reliable prediction under

biological variability

Incorporate closed-loop biodesign
via robotics

Sparse learning; bioinspired distributed architectures

Multiscale algorithms; exascale simulations;
multimodal data integration and representation;
agent-based modeling

Probabilistic models; exascale embedding
and contrastive learning frameworks

Federated multimodal large language models with
fine-tuning pipelines and guardrails

Hybrid physics-machine learning twin frameworks;
surrogate machine learning cosolvers on exascale

Conformal prediction; out-of-distribution detection;
reproducible machine learning workflows

Active learning; surrogate models; edge Al integration;
hardware/software codesign; digital twins

U.S. Department of Energy Office of Science



Workshop Agenda

Day 1: February 4, 2025

8:00-9:00 a.m.
9:00-9:15 a.m.

9:15-9:30 a.m.

9:30-10:00 a.m.

10:00-10:15 a.m.

10:15-10:30 a.m.

10:30 a.m.-12:00 p.m.

12:00-1:00 p.m.
1:00-1:45 p.m.
1:45-2:00 p.m.

2:00-2:30 p.m.

2:30-3:00 p.m.

3:00-3:10 p.m.

3:10-4:40 p.m.

4:40-5:40 p.m.
5:40 p.m.

Breakfast

BER and ASCR Welcome

Speakers: Dorothy Koch, Associate Director, U.S. Department of Energy (DOE) Biological
and Environmental Research (BER) program; Ceren Susut, Associate Director, DOE
Advanced Scientific Computing Research (ASCR) program

Workshop Overview
Speakers: Daniela Ushizima (co-chair), Lawrence Berkeley National Laboratory;
Christopher Henry (co-chair), Argonne National Laboratory

Foundation Models and Exascale Computing
Speaker: Rick Stevens, Argonne National Laboratory

Experiment Design with Al
Speaker: Kirsten Hofmockel, Pacific Northwest National Laboratory

Break

Breakout Sessions 1
Foundation Models: Three Groups
Experiment Design: Three Groups

Lunch and Group Photo
Morning Breakout Report-Outs: Foundation Models and Experiment Design

Automated Labs/ Science
Speaker: Andrew Beam, Lila Sciences

Data Fusion
Speaker: David Baker, University of Washington

Automated Labs
Speaker: D). Kleinbaum, Emerald Cloud Lab

Break

Breakout Sessions 2
Data Fusion: Three Groups
Automated Labs: Three Groups

Afternoon Breakout Report-Outs: Data Fusion and Automated Labs

Adjourn
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Day 2: February 5, 2025

8:00-9:00 a.m.
9:00-9:20 a.m.

9:20-9:35 a.m.

9:45-10:00 a.m.

10:00-10:15 a.m.

10:15-10:30 a.m.

10:30-10:35 a.m.

10:45 a.m.-12:00 p.m.

12:00-1:00 p.m.
1:00-2:00 p.m.
2:00-2:15 p.m.

2:15-2:30 p.m.

2:30-3:00 p.m.

3:00-3:10 p.m.

3:10-4:40 p.m.

4:40-5:40 p.m.

5:40 p.m.

6:00 p.m.

Breakfast

Day 1 Review and Day 2 Plan
Speakers: Christopher Henry and Daniela Ushizima

Digital Twins
Speaker: Shalin Mehta, Chan Zuckerberg Biohub

Digital Twins
Speaker: Jesse Tetreault, NVIDIA

Trustworthy Al
Speaker: Sergio Baranzini, University of California-San Francisco

Trustworthy Al
Speaker: Prasanna Balaprakash, Oak Ridge National Laboratory

Break

Breakout Sessions 3
Digital Twins: Three Groups
Trustworthy Al: Three Groups

Lunch and Group Photo
Morning Breakout Report-Outs: Digital Twins and Trustworthy Al

Novel Algorithms
Speaker: Elebeoba May, University of Wisconsin-Madison

Novel Algorithms
Speaker: James Sethian, University of California-Berkeley

Multimodal Modeling at Exascale
Speaker: Arvind Ramanathan, Argonne National Laboratory

Break

Breakout Sessions 4
Novel Algorithms: Three Groups
Multiscale, Multimodal Modeling: Three Groups

Afternoon Breakout Report-Outs: Novel Algorithms and Multiscale Modeling

Closing Remarks
Speakers: Margaret Lentz, ASCR; and Ramana Madupu, BER

Adjourn

Day 3: February 6, 2025

8:00-9:00 a.m.
9:00-10:30 a.m.
10:30-11:00 a.m.
11:00 a.m.-12:00 p.m.
12:00 p.m.
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Writing Session

Break

Writing Session

Adjourn
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Glossary

Al co-scientist

An artificial intelligence system designed to act as a
collaborative partner in scientific research, contribut-
ing substantively to hypothesis generation, experimen-
tal design, data analysis, interpretation, and discovery
by integrating domain knowledge, reasoning, and
adaptive learning in concert with human scientists.

anaerobic
A process, organism, or environment that occurs or
exists in the absence of molecular oxygen.

biological dark matter
Biological molecules or organisms that are unde-
tected or are detected but lack known functions.

causal inference

Al/statistical approaches designed to identify and
understand the cause-and-effect relationships
across data.

computational topology

Topology examines point sets and their invariants
under continuous deformations, such as the number
of connected components, holes, tunnels, or cavities.
Computational topology deals with the complexity of
topological problems and with the design of efficient
algorithms for their solution in case these problems
are tractable.

contrastive model

A machine learning model trained to learn represen-
tations by distinguishing between similar (positive)
and dissimilar (negative) pairs of data, optimizing

an objective function that increases similarity in the
learned feature space for related inputs while maxi-
mizing separation for unrelated ones.

U.S. Department of Energy Office of Science

convolutional neural networks (CNN)

A class of deep, feedforward artificial neural net-
works designed to automatically and adaptively learn
spatial hierarchies of features from structured data
(such as images, sequences, or volumes) by applying
convolutional operations, nonlinear activations, and
pooling across multiple layers.

counterfactual explanation

An interpretable model output that identifies min-
imal changes to input features of a given instance
that would alter the model's prediction to a specified
desired outcome, thereby offering insight into the
model’s decision boundaries and causal behavior.

deep learning-based spectral analysis

The application of deep neural network architectures
to interpret, model, or extract meaningful informa-
tion from spectral data, such as those obtained from
techniques including mass spectrometry, nuclear
magnetic resonance, infrared spectroscopy, Raman
spectroscopy, and ultraviolet-visible spectroscopy.

diffusion models

Generative models used primarily for image genera-
tion and other computer vision tasks. Diffusion-based
neural networks are trained through deep learning
to progressively “diffuse” samples with random

noise, then reverse that diffusion process to generate
high-quality images.

digital twin

Avirtual representation or computational model
of a physical object, system, or process designed
to simulate real-world behaviors, interactions, and
responses. By leveraging real-time data, advanced
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simulations, and predictive analytics, digital twins
allow users to monitor, analyze, optimize, and con-
trol their physical counterparts, enabling improved
decision-making, experimentation, and forecasting in
a controlled virtual environment.

edge algorithms

Computational methods designed for data process-
ing and analysis directly on devices or sensors near
data generation points, minimizing latency and band-
width usage.

energy functionals

Mathematical constructs that assign a scalar energy
value to a function or configuration of a physical
system, typically representing the total energy (e.g.,
kinetic, potential, or free energy) as a function of
fields, wavefunctions, or density distributions over
space.

epigenetic

Heritable changes in gene expression that do not
alter DNA sequences, typically involving chemi-
cal modifications like DNA methylation or histone
modification.

exascale computing

Computation using computers capable of performing
at least 1 exaFLOP (1078 floating point operations per
second).

few-shot learning

A machine learning framework in which an Al model
learns to make accurate predictions by training on a
very small number of labeled examples.

foundation models

Deep learning models trained on vast datasets that
can be applied across a wide range of use cases. Gen-
erative Al applications like large language models are
common examples of foundation models.

global biogeochemical cycles

Integrated, planet-scale processes by which chemical
elements and compounds are exchanged among
the biosphere, atmosphere, hydrosphere, and geo-
sphere, driven by biological, geological, and chemical
mechanisms that regulate the composition and func-
tioning of Earth’s ecosystems.

January 2026

global nutrient cycles

Large-scale, biogeochemical processes that govern
the movement, transformation, and conservation of
essential chemical elements (e.g., carbon, nitrogen,
phosphorus, and sulfur) through the biosphere,
atmosphere, hydrosphere, and geosphere, enabling
the sustained productivity and regulation of Earth’s
ecosystems.

graph neural networks (GNNs)

Graph neural networks apply the predictive power
of deep learning to rich data structures that depict
objects and their relationships as points connected
by lines in a graph.

hyperparameter optimization (HPO)

A mechanism for automatically exploring a search
space of potential hyperparameters, building a series
of models and comparing the models using metrics
of interest.

in situ

Experiments or observations performed within the
natural location or native context of a biological sys-
tem, without removing the subject from its original
environment or disrupting its structural or spatial
organization.

isofunctional protein families

Groups of evolutionarily related proteins that, despite
possible sequence divergence, catalyze the same
biochemical reaction or perform the same molecular
function across different organisms or contexts.

latent embedding spaces

In machine learning, a compressed representation
of data points that preserves only essential features
that inform the input data’s underlying structure.

large language model (LLM)

A specialized type of machine learning model tailored
for natural language processing tasks, including text
generation. These models contain a large number

of parameters and are typically trained using self-
supervised techniques on extensive text datasets.

long molecular representations

Structured encodings of complex biological mole-
cules (such as DNA, RNA, proteins, or metabolites)
that capture detailed, extended information about
their sequence, structure, modifications, or functional
context across large spatial or informational scales.
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manifold learning

A class of unsupervised estimators that seeks to
describe datasets as low-dimensional manifolds
embedded in high-dimensional spaces.

mass spectrometry
An analytical technique used to measure the mass-to-
charge ratio (m/z) of ions.

metabolism

Describes how cells extract materials and energy
from the environment and synthesize important
byproducts.

metabolite
A small biological molecule produced by or involved
in cellular metabolism.

metabolomics

The global profiling of small molecule metabolites in
a biological sample (typically <1,500 daltons), provid-
ing insights into metabolic processes.

metaphenomes

Comprehensive sets of measurable phenotypic traits
and functions expressed collectively by microbial
communities (or other multiorganism systems) in a
specific environment, emerging from the combined
genetic potential (metagenomes) and environmental
interactions of the constituent organisms.

microbiome

The collection of microorganisms (such as bacteria,
fungi, viruses, and archaea) present in a specific envi-
ronment, such as an animal gut or soil.

model-experiment-observation (ModEx)

An iterative research approach integrating computa-
tional modeling and experimental data to accelerate
scientific discovery and validation.

multiscale

Analysis or modeling spanning multiple spatial or
temporal scales, such as molecular to organism or
milliseconds to years.

multimodal

Combining different data types or sensing modalities
(e.g., images, text, and audio) to enhance analysis,
prediction, or understanding.

U.S. Department of Energy Office of Science

Appendix C | Glossary

multiomics

The integrative analysis of multiple omics data types
(e.g., genomics, proteomics, and metabolomics) for
comprehensive biological insight.

neural networks (NN)
Information processing paradigms inspired by the
way biological neural systems process data.

out-of-distribution scenarios
Data points that fall outside the distribution of the
training data for a model.

parallelized deep networks

Deep learning architectures whose training or infer-
ence processes are distributed across multiple com-
putational units, such as central processing units,
graphics processing units, or compute nodes, using
parallel computing techniques to increase scalabil-
ity, reduce runtime, and handle large-scale data or
model sizes.

phenotyping
Process of observing, measuring, and analyzing an
organism’s traits or characteristics.

physics-informed Al/ML

Al/ML that seamlessly integrates data and mathe-
matical physics models, even in partially understood,
uncertain, and high-dimensional contexts.

probabilistic formulations

Mathematical framework in which phenomena,
models, or hypotheses are expressed in terms of
probability theory, enabling the representation of
uncertainty, variability, and incomplete information
through probability distributions over possible out-
comes or parameters.

probabilistic inference

The process of calculating the conditional probability
of a variable having a certain value, given specific evi-
dence about other variables in a probabilistic model.

proteomics

The large-scale study of proteins, including their
structures, functions, and interactions, within cells or
organisms.
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rhizosphere
Region of soil impacted by the presence of plant roots.

strong scaling
The efficiency of solving a fixed total program size or
workload size with increasing numbers of workers.

surrogate representations

Simplified approximations of more complex, higher-
order models. They are generally used to map input
data to outputs when the actual relationship between
the two is unknown or computationally expensive to
evaluate.

threading

Small units of a computer program that can run inde-
pendently, allowing the program to perform multiple
tasks at the same time.

transcriptomics

The study of the complete set of RNA transcripts pro-
duced by the genome, providing insights into gene
expression and regulation.
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UniProt Knowledgebase/Swiss-Prot

A database providing high-quality, nonredundant
protein sequence records with expert-reviewed func-
tional annotations, including information on protein
function, domain structure, post-translational modi-
fications, variants, and protein-protein interactions.
Swiss-Prot is a manually curated subsection of Uni-
ProtKB, comprised primarily of proteins with experi-
mentally validated functions.

vectorization

A technique used to improve the performance of
operations on data, especially large datasets, by pro-
cessing multiple data points simultaneously using a
single instruction, often reducing the use of for/while
loops.

vision transformers (ViTs)
A transformer-like model that handles images for
vision processing tasks.
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Appendix E
Acronyms and Abbreviations

Al
ALCF

API
ASCR

AUPR

AUROC

BER

CASP

DOE
EMSL

FAIR

FAPM

GPU
HPC
Jal
KBase

LLM
ML

January 2026

artificial intelligence

Argonne Leadership Computing
Facility

application programming interface

Advanced Scientific Computing
Research program

area under the precision-recall
curve

area under the receiver operating
characteristic curve

Biological and Environmental
Research program

critical assessment of structure
prediction

U.S. Department of Energy

Environmental Molecular Sciences
Laboratory

findable, accessible, interoperable,
reusable

Functional Annotation of Proteins
using Multimodal models

graphics processing unit
high-performance computing
DOE Joint Genome Institute

DOE Systems Biology
Knowledgebase

large language model

machine learning

ModEx
NERSC

NMDC

NVBL

OLCF

PDB
PDE
PLM
PRD
RL
SC

SHAP
UMAP

V&V
ViT

model-observation-experiment

National Energy Research Scientific
Computing Center

National Microbiome Data
Collaborative

National Virtual Biotechnology
Laboratory

Oak Ridge Leadership Computing
Facility

Protein Data Bank

partial differential equations
protein language model
priority research direction
reinforcement learning

U.S. Department of Energy Office
of Science

SHapley Additive exPlanations

uniform manifold approximation
and projection

verification and validation

vision transformer
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